MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmosetre Unicode version

Theorem nmosetre 21358
Description: The set in the supremum of the operator norm definition df-nmoo 21339 is a set of reals. (Contributed by NM, 13-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmosetre.2  |-  Y  =  ( BaseSet `  W )
nmosetre.4  |-  N  =  ( normCV `  W )
Assertion
Ref Expression
nmosetre  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( M `  z
)  <_  1  /\  x  =  ( N `  ( T `  z
) ) ) } 
C_  RR )
Distinct variable groups:    x, z, T    x, W, z    x, X, z    x, Y, z
Allowed substitution hints:    M( x, z)    N( x, z)

Proof of Theorem nmosetre
StepHypRef Expression
1 ffvelrn 5679 . . . . . . . . 9  |-  ( ( T : X --> Y  /\  z  e.  X )  ->  ( T `  z
)  e.  Y )
2 nmosetre.2 . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
3 nmosetre.4 . . . . . . . . . 10  |-  N  =  ( normCV `  W )
42, 3nvcl 21241 . . . . . . . . 9  |-  ( ( W  e.  NrmCVec  /\  ( T `  z )  e.  Y )  ->  ( N `  ( T `  z ) )  e.  RR )
51, 4sylan2 460 . . . . . . . 8  |-  ( ( W  e.  NrmCVec  /\  ( T : X --> Y  /\  z  e.  X )
)  ->  ( N `  ( T `  z
) )  e.  RR )
65anassrs 629 . . . . . . 7  |-  ( ( ( W  e.  NrmCVec  /\  T : X --> Y )  /\  z  e.  X
)  ->  ( N `  ( T `  z
) )  e.  RR )
7 eleq1 2356 . . . . . . 7  |-  ( x  =  ( N `  ( T `  z ) )  ->  ( x  e.  RR  <->  ( N `  ( T `  z ) )  e.  RR ) )
86, 7syl5ibr 212 . . . . . 6  |-  ( x  =  ( N `  ( T `  z ) )  ->  ( (
( W  e.  NrmCVec  /\  T : X --> Y )  /\  z  e.  X
)  ->  x  e.  RR ) )
98impcom 419 . . . . 5  |-  ( ( ( ( W  e.  NrmCVec 
/\  T : X --> Y )  /\  z  e.  X )  /\  x  =  ( N `  ( T `  z ) ) )  ->  x  e.  RR )
109adantrl 696 . . . 4  |-  ( ( ( ( W  e.  NrmCVec 
/\  T : X --> Y )  /\  z  e.  X )  /\  (
( M `  z
)  <_  1  /\  x  =  ( N `  ( T `  z
) ) ) )  ->  x  e.  RR )
1110exp31 587 . . 3  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  -> 
( z  e.  X  ->  ( ( ( M `
 z )  <_ 
1  /\  x  =  ( N `  ( T `
 z ) ) )  ->  x  e.  RR ) ) )
1211rexlimdv 2679 . 2  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  -> 
( E. z  e.  X  ( ( M `
 z )  <_ 
1  /\  x  =  ( N `  ( T `
 z ) ) )  ->  x  e.  RR ) )
1312abssdv 3260 1  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { x  |  E. z  e.  X  (
( M `  z
)  <_  1  /\  x  =  ( N `  ( T `  z
) ) ) } 
C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557    C_ wss 3165   class class class wbr 4039   -->wf 5267   ` cfv 5271   RRcr 8752   1c1 8754    <_ cle 8884   NrmCVeccnv 21156   BaseSetcba 21158   normCVcnmcv 21162
This theorem is referenced by:  nmoxr  21360  nmooge0  21361  nmorepnf  21362  nmoolb  21365  nmoubi  21366  nmlno0lem  21387  nmopsetretHIL  22460
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172
  Copyright terms: Public domain W3C validator