MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoub2i Structured version   Unicode version

Theorem nmoub2i 22306
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOp OLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmoub2i  |-  ( ( T : X --> Y  /\  ( A  e.  RR  /\  0  <_  A )  /\  A. x  e.  X  ( M `  ( T `
 x ) )  <_  ( A  x.  ( L `  x ) ) )  ->  ( N `  T )  <_  A )
Distinct variable groups:    x, A    x, L    x, U    x, W    x, Y    x, M    x, T    x, X
Allowed substitution hint:    N( x)

Proof of Theorem nmoub2i
StepHypRef Expression
1 nmoubi.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 nmoubi.y . . . 4  |-  Y  =  ( BaseSet `  W )
3 nmoubi.l . . . 4  |-  L  =  ( normCV `  U )
4 nmoubi.m . . . 4  |-  M  =  ( normCV `  W )
5 nmoubi.3 . . . 4  |-  N  =  ( U normOp OLD W
)
6 nmoubi.u . . . 4  |-  U  e.  NrmCVec
7 nmoubi.w . . . 4  |-  W  e.  NrmCVec
81, 2, 3, 4, 5, 6, 7nmoub3i 22305 . . 3  |-  ( ( T : X --> Y  /\  A  e.  RR  /\  A. x  e.  X  ( M `  ( T `  x ) )  <_ 
( A  x.  ( L `  x )
) )  ->  ( N `  T )  <_  ( abs `  A
) )
983adant2r 1180 . 2  |-  ( ( T : X --> Y  /\  ( A  e.  RR  /\  0  <_  A )  /\  A. x  e.  X  ( M `  ( T `
 x ) )  <_  ( A  x.  ( L `  x ) ) )  ->  ( N `  T )  <_  ( abs `  A
) )
10 absid 12132 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  A )
11103ad2ant2 980 . 2  |-  ( ( T : X --> Y  /\  ( A  e.  RR  /\  0  <_  A )  /\  A. x  e.  X  ( M `  ( T `
 x ) )  <_  ( A  x.  ( L `  x ) ) )  ->  ( abs `  A )  =  A )
129, 11breqtrd 4261 1  |-  ( ( T : X --> Y  /\  ( A  e.  RR  /\  0  <_  A )  /\  A. x  e.  X  ( M `  ( T `
 x ) )  <_  ( A  x.  ( L `  x ) ) )  ->  ( N `  T )  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   A.wral 2711   class class class wbr 4237   -->wf 5479   ` cfv 5483  (class class class)co 6110   RRcr 9020   0cc0 9021    x. cmul 9026    <_ cle 9152   abscabs 12070   NrmCVeccnv 22094   BaseSetcba 22096   normCVcnmcv 22100   normOp OLDcnmoo 22273
This theorem is referenced by:  nmlnoubi  22328  nmopub2tHIL  23444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-sup 7475  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-rp 10644  df-seq 11355  df-exp 11414  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-grpo 21810  df-gid 21811  df-ginv 21812  df-ablo 21901  df-vc 22056  df-nv 22102  df-va 22105  df-ba 22106  df-sm 22107  df-0v 22108  df-nmcv 22110  df-nmoo 22277
  Copyright terms: Public domain W3C validator