MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoubi Unicode version

Theorem nmoubi 21350
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOp OLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmoubi  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) ) )
Distinct variable groups:    x, A    x, L    x, U    x, W    x, Y    x, M    x, T    x, X
Allowed substitution hint:    N( x)

Proof of Theorem nmoubi
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoubi.u . . . . . 6  |-  U  e.  NrmCVec
2 nmoubi.w . . . . . 6  |-  W  e.  NrmCVec
3 nmoubi.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
4 nmoubi.y . . . . . . 7  |-  Y  =  ( BaseSet `  W )
5 nmoubi.l . . . . . . 7  |-  L  =  ( normCV `  U )
6 nmoubi.m . . . . . . 7  |-  M  =  ( normCV `  W )
7 nmoubi.3 . . . . . . 7  |-  N  =  ( U normOp OLD W
)
83, 4, 5, 6, 7nmooval 21341 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T : X
--> Y )  ->  ( N `  T )  =  sup ( { y  |  E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  y  =  ( M `  ( T `
 x ) ) ) } ,  RR* ,  <  ) )
91, 2, 8mp3an12 1267 . . . . 5  |-  ( T : X --> Y  -> 
( N `  T
)  =  sup ( { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } ,  RR* ,  <  )
)
109breq1d 4033 . . . 4  |-  ( T : X --> Y  -> 
( ( N `  T )  <_  A  <->  sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A ) )
1110adantr 451 . . 3  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A ) )
124, 6nmosetre 21342 . . . . . 6  |-  ( ( W  e.  NrmCVec  /\  T : X --> Y )  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR )
132, 12mpan 651 . . . . 5  |-  ( T : X --> Y  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR )
14 ressxr 8876 . . . . 5  |-  RR  C_  RR*
1513, 14syl6ss 3191 . . . 4  |-  ( T : X --> Y  ->  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR* )
16 supxrleub 10645 . . . 4  |-  ( ( { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } 
C_  RR*  /\  A  e. 
RR* )  ->  ( sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } ,  RR* ,  <  )  <_  A  <->  A. z  e.  { y  |  E. x  e.  X  (
( L `  x
)  <_  1  /\  y  =  ( M `  ( T `  x
) ) ) } z  <_  A )
)
1715, 16sylan 457 . . 3  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( sup ( { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x )
) ) } ,  RR* ,  <  )  <_  A 
<-> 
A. z  e.  {
y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x )
) ) } z  <_  A ) )
1811, 17bitrd 244 . 2  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. z  e.  { y  |  E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  y  =  ( M `  ( T `
 x ) ) ) } z  <_  A ) )
19 eqeq1 2289 . . . . . 6  |-  ( y  =  z  ->  (
y  =  ( M `
 ( T `  x ) )  <->  z  =  ( M `  ( T `
 x ) ) ) )
2019anbi2d 684 . . . . 5  |-  ( y  =  z  ->  (
( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) )  <-> 
( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) ) ) )
2120rexbidv 2564 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) )  <->  E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) ) ) )
2221ralab 2926 . . 3  |-  ( A. z  e.  { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } z  <_  A  <->  A. z ( E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x )
) )  ->  z  <_  A ) )
23 ralcom4 2806 . . . 4  |-  ( A. x  e.  X  A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. z A. x  e.  X  ( ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A ) )
24 ancomsimp 1359 . . . . . . . 8  |-  ( ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( ( z  =  ( M `  ( T `  x ) )  /\  ( L `
 x )  <_ 
1 )  ->  z  <_  A ) )
25 impexp 433 . . . . . . . 8  |-  ( ( ( z  =  ( M `  ( T `
 x ) )  /\  ( L `  x )  <_  1
)  ->  z  <_  A )  <->  ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) ) )
2624, 25bitri 240 . . . . . . 7  |-  ( ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) ) )
2726albii 1553 . . . . . 6  |-  ( A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. z
( z  =  ( M `  ( T `
 x ) )  ->  ( ( L `
 x )  <_ 
1  ->  z  <_  A ) ) )
28 fvex 5539 . . . . . . 7  |-  ( M `
 ( T `  x ) )  e. 
_V
29 breq1 4026 . . . . . . . 8  |-  ( z  =  ( M `  ( T `  x ) )  ->  ( z  <_  A  <->  ( M `  ( T `  x ) )  <_  A )
)
3029imbi2d 307 . . . . . . 7  |-  ( z  =  ( M `  ( T `  x ) )  ->  ( (
( L `  x
)  <_  1  ->  z  <_  A )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) ) )
3128, 30ceqsalv 2814 . . . . . 6  |-  ( A. z ( z  =  ( M `  ( T `  x )
)  ->  ( ( L `  x )  <_  1  ->  z  <_  A ) )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
3227, 31bitri 240 . . . . 5  |-  ( A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
3332ralbii 2567 . . . 4  |-  ( A. x  e.  X  A. z ( ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A )  <->  A. x  e.  X  ( ( L `  x )  <_  1  ->  ( M `  ( T `  x
) )  <_  A
) )
34 r19.23v 2659 . . . . 5  |-  ( A. x  e.  X  (
( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x ) ) )  ->  z  <_  A
)  <->  ( E. x  e.  X  ( ( L `  x )  <_  1  /\  z  =  ( M `  ( T `  x )
) )  ->  z  <_  A ) )
3534albii 1553 . . . 4  |-  ( A. z A. x  e.  X  ( ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A )  <->  A. z ( E. x  e.  X  ( ( L `  x
)  <_  1  /\  z  =  ( M `  ( T `  x
) ) )  -> 
z  <_  A )
)
3623, 33, 353bitr3i 266 . . 3  |-  ( A. x  e.  X  (
( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A )  <->  A. z
( E. x  e.  X  ( ( L `
 x )  <_ 
1  /\  z  =  ( M `  ( T `
 x ) ) )  ->  z  <_  A ) )
3722, 36bitr4i 243 . 2  |-  ( A. z  e.  { y  |  E. x  e.  X  ( ( L `  x )  <_  1  /\  y  =  ( M `  ( T `  x ) ) ) } z  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) )
3818, 37syl6bb 252 1  |-  ( ( T : X --> Y  /\  A  e.  RR* )  -> 
( ( N `  T )  <_  A  <->  A. x  e.  X  ( ( L `  x
)  <_  1  ->  ( M `  ( T `
 x ) )  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736   1c1 8738   RR*cxr 8866    < clt 8867    <_ cle 8868   NrmCVeccnv 21140   BaseSetcba 21142   normCVcnmcv 21146   normOp OLDcnmoo 21319
This theorem is referenced by:  nmoub3i  21351  nmobndi  21353  ubthlem2  21450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156  df-nmoo 21323
  Copyright terms: Public domain W3C validator