MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmounbseqiOLD Unicode version

Theorem nmounbseqiOLD 22240
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nmoubi.1  |-  X  =  ( BaseSet `  U )
nmoubi.y  |-  Y  =  ( BaseSet `  W )
nmoubi.l  |-  L  =  ( normCV `  U )
nmoubi.m  |-  M  =  ( normCV `  W )
nmoubi.3  |-  N  =  ( U normOp OLD W
)
nmoubi.u  |-  U  e.  NrmCVec
nmoubi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
nmounbseqiOLD  |-  ( ( T : X --> Y  /\  ( N `  T )  =  +oo )  ->  E. f ( f : NN --> X  /\  A. k  e.  NN  (
( L `  (
f `  k )
)  <_  1  /\  k  <  ( M `  ( T `  ( f `
 k ) ) ) ) ) )
Distinct variable groups:    f, k, L    k, Y    f, M, k    T, f, k    f, X, k    k, N
Allowed substitution hints:    U( f, k)    N( f)    W( f, k)    Y( f)

Proof of Theorem nmounbseqiOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nmoubi.1 . . . 4  |-  X  =  ( BaseSet `  U )
2 nmoubi.y . . . 4  |-  Y  =  ( BaseSet `  W )
3 nmoubi.l . . . 4  |-  L  =  ( normCV `  U )
4 nmoubi.m . . . 4  |-  M  =  ( normCV `  W )
5 nmoubi.3 . . . 4  |-  N  =  ( U normOp OLD W
)
6 nmoubi.u . . . 4  |-  U  e.  NrmCVec
7 nmoubi.w . . . 4  |-  W  e.  NrmCVec
81, 2, 3, 4, 5, 6, 7nmounbi 22238 . . 3  |-  ( T : X --> Y  -> 
( ( N `  T )  =  +oo  <->  A. k  e.  RR  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  < 
( M `  ( T `  y )
) ) ) )
98biimpa 471 . 2  |-  ( ( T : X --> Y  /\  ( N `  T )  =  +oo )  ->  A. k  e.  RR  E. y  e.  X  ( ( L `  y
)  <_  1  /\  k  <  ( M `  ( T `  y ) ) ) )
10 nnre 9971 . . . 4  |-  ( k  e.  NN  ->  k  e.  RR )
1110imim1i 56 . . 3  |-  ( ( k  e.  RR  ->  E. y  e.  X  ( ( L `  y
)  <_  1  /\  k  <  ( M `  ( T `  y ) ) ) )  -> 
( k  e.  NN  ->  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  <  ( M `
 ( T `  y ) ) ) ) )
1211ralimi2 2746 . 2  |-  ( A. k  e.  RR  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  < 
( M `  ( T `  y )
) )  ->  A. k  e.  NN  E. y  e.  X  ( ( L `
 y )  <_ 
1  /\  k  <  ( M `  ( T `
 y ) ) ) )
13 nnex 9970 . . 3  |-  NN  e.  _V
14 fveq2 5695 . . . . 5  |-  ( y  =  ( f `  k )  ->  ( L `  y )  =  ( L `  ( f `  k
) ) )
1514breq1d 4190 . . . 4  |-  ( y  =  ( f `  k )  ->  (
( L `  y
)  <_  1  <->  ( L `  ( f `  k
) )  <_  1
) )
16 fveq2 5695 . . . . . 6  |-  ( y  =  ( f `  k )  ->  ( T `  y )  =  ( T `  ( f `  k
) ) )
1716fveq2d 5699 . . . . 5  |-  ( y  =  ( f `  k )  ->  ( M `  ( T `  y ) )  =  ( M `  ( T `  ( f `  k ) ) ) )
1817breq2d 4192 . . . 4  |-  ( y  =  ( f `  k )  ->  (
k  <  ( M `  ( T `  y
) )  <->  k  <  ( M `  ( T `
 ( f `  k ) ) ) ) )
1915, 18anbi12d 692 . . 3  |-  ( y  =  ( f `  k )  ->  (
( ( L `  y )  <_  1  /\  k  <  ( M `
 ( T `  y ) ) )  <-> 
( ( L `  ( f `  k
) )  <_  1  /\  k  <  ( M `
 ( T `  ( f `  k
) ) ) ) ) )
2013, 19ac6s 8328 . 2  |-  ( A. k  e.  NN  E. y  e.  X  ( ( L `  y )  <_  1  /\  k  < 
( M `  ( T `  y )
) )  ->  E. f
( f : NN --> X  /\  A. k  e.  NN  ( ( L `
 ( f `  k ) )  <_ 
1  /\  k  <  ( M `  ( T `
 ( f `  k ) ) ) ) ) )
219, 12, 203syl 19 1  |-  ( ( T : X --> Y  /\  ( N `  T )  =  +oo )  ->  E. f ( f : NN --> X  /\  A. k  e.  NN  (
( L `  (
f `  k )
)  <_  1  /\  k  <  ( M `  ( T `  ( f `
 k ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   class class class wbr 4180   -->wf 5417   ` cfv 5421  (class class class)co 6048   RRcr 8953   1c1 8955    +oocpnf 9081    < clt 9084    <_ cle 9085   NNcn 9964   NrmCVeccnv 22024   BaseSetcba 22026   normCVcnmcv 22030   normOp OLDcnmoo 22203
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-reg 7524  ax-inf2 7560  ax-ac2 8307  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-r1 7654  df-rank 7655  df-card 7790  df-ac 7961  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-grpo 21740  df-gid 21741  df-ginv 21742  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-nmcv 22040  df-nmoo 22207
  Copyright terms: Public domain W3C validator