MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoval Structured version   Unicode version

Theorem nmoval 18749
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.)
Hypotheses
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
nmofval.2  |-  V  =  ( Base `  S
)
nmofval.3  |-  L  =  ( norm `  S
)
nmofval.4  |-  M  =  ( norm `  T
)
Assertion
Ref Expression
nmoval  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( N `  F )  =  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )
)
Distinct variable groups:    x, r, L    M, r, x    S, r, x    T, r, x    F, r, x    V, r, x    N, r, x

Proof of Theorem nmoval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . . . 5  |-  N  =  ( S normOp T )
2 nmofval.2 . . . . 5  |-  V  =  ( Base `  S
)
3 nmofval.3 . . . . 5  |-  L  =  ( norm `  S
)
4 nmofval.4 . . . . 5  |-  M  =  ( norm `  T
)
51, 2, 3, 4nmofval 18748 . . . 4  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N  =  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) ) )
65fveq1d 5730 . . 3  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  ( N `  F )  =  ( ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) ) `  F
) )
7 fveq1 5727 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
87fveq2d 5732 . . . . . . . 8  |-  ( f  =  F  ->  ( M `  ( f `  x ) )  =  ( M `  ( F `  x )
) )
98breq1d 4222 . . . . . . 7  |-  ( f  =  F  ->  (
( M `  (
f `  x )
)  <_  ( r  x.  ( L `  x
) )  <->  ( M `  ( F `  x
) )  <_  (
r  x.  ( L `
 x ) ) ) )
109ralbidv 2725 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) )  <->  A. x  e.  V  ( M `  ( F `  x
) )  <_  (
r  x.  ( L `
 x ) ) ) )
1110rabbidv 2948 . . . . 5  |-  ( f  =  F  ->  { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) }  =  {
r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( F `  x ) )  <_ 
( r  x.  ( L `  x )
) } )
1211supeq1d 7451 . . . 4  |-  ( f  =  F  ->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )  =  sup ( { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( F `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  `'  <  ) )
13 eqid 2436 . . . 4  |-  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( f `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  `'  <  ) )  =  ( f  e.  ( S  GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `  x
) )  <_  (
r  x.  ( L `
 x ) ) } ,  RR* ,  `'  <  ) )
14 xrltso 10734 . . . . . 6  |-  <  Or  RR*
15 cnvso 5411 . . . . . 6  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1614, 15mpbi 200 . . . . 5  |-  `'  <  Or 
RR*
1716supex 7468 . . . 4  |-  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )  e.  _V
1812, 13, 17fvmpt 5806 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( (
f  e.  ( S 
GrpHom  T )  |->  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( f `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )
) `  F )  =  sup ( { r  e.  ( 0 [,) 
+oo )  |  A. x  e.  V  ( M `  ( F `  x ) )  <_ 
( r  x.  ( L `  x )
) } ,  RR* ,  `'  <  ) )
196, 18sylan9eq 2488 . 2  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  F  e.  ( S  GrpHom  T ) )  ->  ( N `  F )  =  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )
)
20193impa 1148 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp  /\  F  e.  ( S  GrpHom  T ) )  ->  ( N `  F )  =  sup ( { r  e.  ( 0 [,)  +oo )  |  A. x  e.  V  ( M `  ( F `
 x ) )  <_  ( r  x.  ( L `  x
) ) } ,  RR* ,  `'  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   {crab 2709   class class class wbr 4212    e. cmpt 4266    Or wor 4502   `'ccnv 4877   ` cfv 5454  (class class class)co 6081   supcsup 7445   0cc0 8990    x. cmul 8995    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121   [,)cico 10918   Basecbs 13469    GrpHom cghm 15003   normcnm 18624  NrmGrpcngp 18625   normOpcnmo 18739
This theorem is referenced by:  nmogelb  18750  nmolb  18751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-ico 10922  df-nmo 18742
  Copyright terms: Public domain W3C validator