MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd Unicode version

Theorem nmpropd 18132
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
nmpropd.2  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  L ) )
nmpropd.3  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  L ) )
Assertion
Ref Expression
nmpropd  |-  ( ph  ->  ( norm `  K
)  =  ( norm `  L ) )

Proof of Theorem nmpropd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmpropd.1 . . 3  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
2 nmpropd.3 . . . 4  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  L ) )
3 eqidd 2297 . . . 4  |-  ( ph  ->  x  =  x )
4 eqidd 2297 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  K ) )
5 nmpropd.2 . . . . . 6  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  L ) )
65proplem3 13609 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
74, 1, 6grpidpropd 14415 . . . 4  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
82, 3, 7oveq123d 5895 . . 3  |-  ( ph  ->  ( x ( dist `  K ) ( 0g
`  K ) )  =  ( x (
dist `  L )
( 0g `  L
) ) )
91, 8mpteq12dv 4114 . 2  |-  ( ph  ->  ( x  e.  (
Base `  K )  |->  ( x ( dist `  K ) ( 0g
`  K ) ) )  =  ( x  e.  ( Base `  L
)  |->  ( x (
dist `  L )
( 0g `  L
) ) ) )
10 eqid 2296 . . 3  |-  ( norm `  K )  =  (
norm `  K )
11 eqid 2296 . . 3  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2296 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
13 eqid 2296 . . 3  |-  ( dist `  K )  =  (
dist `  K )
1410, 11, 12, 13nmfval 18127 . 2  |-  ( norm `  K )  =  ( x  e.  ( Base `  K )  |->  ( x ( dist `  K
) ( 0g `  K ) ) )
15 eqid 2296 . . 3  |-  ( norm `  L )  =  (
norm `  L )
16 eqid 2296 . . 3  |-  ( Base `  L )  =  (
Base `  L )
17 eqid 2296 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
18 eqid 2296 . . 3  |-  ( dist `  L )  =  (
dist `  L )
1915, 16, 17, 18nmfval 18127 . 2  |-  ( norm `  L )  =  ( x  e.  ( Base `  L )  |->  ( x ( dist `  L
) ( 0g `  L ) ) )
209, 14, 193eqtr4g 2353 1  |-  ( ph  ->  ( norm `  K
)  =  ( norm `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   distcds 13233   0gc0g 13416   normcnm 18115
This theorem is referenced by:  sranlm  18211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-0g 13420  df-nm 18121
  Copyright terms: Public domain W3C validator