MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd Unicode version

Theorem nmpropd 18505
Description: Weak property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd.1  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
nmpropd.2  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  L ) )
nmpropd.3  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  L ) )
Assertion
Ref Expression
nmpropd  |-  ( ph  ->  ( norm `  K
)  =  ( norm `  L ) )

Proof of Theorem nmpropd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmpropd.1 . . 3  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
2 nmpropd.3 . . . 4  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  L ) )
3 eqidd 2381 . . . 4  |-  ( ph  ->  x  =  x )
4 eqidd 2381 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  K ) )
5 nmpropd.2 . . . . . 6  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  L ) )
65proplem3 13836 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  K
)  /\  y  e.  ( Base `  K )
) )  ->  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y ) )
74, 1, 6grpidpropd 14642 . . . 4  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
82, 3, 7oveq123d 6034 . . 3  |-  ( ph  ->  ( x ( dist `  K ) ( 0g
`  K ) )  =  ( x (
dist `  L )
( 0g `  L
) ) )
91, 8mpteq12dv 4221 . 2  |-  ( ph  ->  ( x  e.  (
Base `  K )  |->  ( x ( dist `  K ) ( 0g
`  K ) ) )  =  ( x  e.  ( Base `  L
)  |->  ( x (
dist `  L )
( 0g `  L
) ) ) )
10 eqid 2380 . . 3  |-  ( norm `  K )  =  (
norm `  K )
11 eqid 2380 . . 3  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2380 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
13 eqid 2380 . . 3  |-  ( dist `  K )  =  (
dist `  K )
1410, 11, 12, 13nmfval 18500 . 2  |-  ( norm `  K )  =  ( x  e.  ( Base `  K )  |->  ( x ( dist `  K
) ( 0g `  K ) ) )
15 eqid 2380 . . 3  |-  ( norm `  L )  =  (
norm `  L )
16 eqid 2380 . . 3  |-  ( Base `  L )  =  (
Base `  L )
17 eqid 2380 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
18 eqid 2380 . . 3  |-  ( dist `  L )  =  (
dist `  L )
1915, 16, 17, 18nmfval 18500 . 2  |-  ( norm `  L )  =  ( x  e.  ( Base `  L )  |->  ( x ( dist `  L
) ( 0g `  L ) ) )
209, 14, 193eqtr4g 2437 1  |-  ( ph  ->  ( norm `  K
)  =  ( norm `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    e. cmpt 4200   ` cfv 5387  (class class class)co 6013   Basecbs 13389   +g cplusg 13449   distcds 13458   0gc0g 13643   normcnm 18488
This theorem is referenced by:  sranlm  18584  zlmnm  24144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-fv 5395  df-ov 6016  df-0g 13647  df-nm 18494
  Copyright terms: Public domain W3C validator