MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmvs Unicode version

Theorem nmvs 18187
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v  |-  V  =  ( Base `  W
)
isnlm.n  |-  N  =  ( norm `  W
)
isnlm.s  |-  .x.  =  ( .s `  W )
isnlm.f  |-  F  =  (Scalar `  W )
isnlm.k  |-  K  =  ( Base `  F
)
isnlm.a  |-  A  =  ( norm `  F
)
Assertion
Ref Expression
nmvs  |-  ( ( W  e. NrmMod  /\  X  e.  K  /\  Y  e.  V )  ->  ( N `  ( X  .x.  Y ) )  =  ( ( A `  X )  x.  ( N `  Y )
) )

Proof of Theorem nmvs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlm.v . . . . 5  |-  V  =  ( Base `  W
)
2 isnlm.n . . . . 5  |-  N  =  ( norm `  W
)
3 isnlm.s . . . . 5  |-  .x.  =  ( .s `  W )
4 isnlm.f . . . . 5  |-  F  =  (Scalar `  W )
5 isnlm.k . . . . 5  |-  K  =  ( Base `  F
)
6 isnlm.a . . . . 5  |-  A  =  ( norm `  F
)
71, 2, 3, 4, 5, 6isnlm 18186 . . . 4  |-  ( W  e. NrmMod 
<->  ( ( W  e. NrmGrp  /\  W  e.  LMod  /\  F  e. NrmRing )  /\  A. x  e.  K  A. y  e.  V  ( N `  ( x  .x.  y ) )  =  ( ( A `  x )  x.  ( N `  y )
) ) )
87simprbi 450 . . 3  |-  ( W  e. NrmMod  ->  A. x  e.  K  A. y  e.  V  ( N `  ( x 
.x.  y ) )  =  ( ( A `
 x )  x.  ( N `  y
) ) )
9 oveq1 5865 . . . . . 6  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
109fveq2d 5529 . . . . 5  |-  ( x  =  X  ->  ( N `  ( x  .x.  y ) )  =  ( N `  ( X  .x.  y ) ) )
11 fveq2 5525 . . . . . 6  |-  ( x  =  X  ->  ( A `  x )  =  ( A `  X ) )
1211oveq1d 5873 . . . . 5  |-  ( x  =  X  ->  (
( A `  x
)  x.  ( N `
 y ) )  =  ( ( A `
 X )  x.  ( N `  y
) ) )
1310, 12eqeq12d 2297 . . . 4  |-  ( x  =  X  ->  (
( N `  (
x  .x.  y )
)  =  ( ( A `  x )  x.  ( N `  y ) )  <->  ( N `  ( X  .x.  y
) )  =  ( ( A `  X
)  x.  ( N `
 y ) ) ) )
14 oveq2 5866 . . . . . 6  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
1514fveq2d 5529 . . . . 5  |-  ( y  =  Y  ->  ( N `  ( X  .x.  y ) )  =  ( N `  ( X  .x.  Y ) ) )
16 fveq2 5525 . . . . . 6  |-  ( y  =  Y  ->  ( N `  y )  =  ( N `  Y ) )
1716oveq2d 5874 . . . . 5  |-  ( y  =  Y  ->  (
( A `  X
)  x.  ( N `
 y ) )  =  ( ( A `
 X )  x.  ( N `  Y
) ) )
1815, 17eqeq12d 2297 . . . 4  |-  ( y  =  Y  ->  (
( N `  ( X  .x.  y ) )  =  ( ( A `
 X )  x.  ( N `  y
) )  <->  ( N `  ( X  .x.  Y
) )  =  ( ( A `  X
)  x.  ( N `
 Y ) ) ) )
1913, 18rspc2v 2890 . . 3  |-  ( ( X  e.  K  /\  Y  e.  V )  ->  ( A. x  e.  K  A. y  e.  V  ( N `  ( x  .x.  y ) )  =  ( ( A `  x )  x.  ( N `  y ) )  -> 
( N `  ( X  .x.  Y ) )  =  ( ( A `
 X )  x.  ( N `  Y
) ) ) )
208, 19syl5com 26 . 2  |-  ( W  e. NrmMod  ->  ( ( X  e.  K  /\  Y  e.  V )  ->  ( N `  ( X  .x.  Y ) )  =  ( ( A `  X )  x.  ( N `  Y )
) ) )
21203impib 1149 1  |-  ( ( W  e. NrmMod  /\  X  e.  K  /\  Y  e.  V )  ->  ( N `  ( X  .x.  Y ) )  =  ( ( A `  X )  x.  ( N `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255  (class class class)co 5858    x. cmul 8742   Basecbs 13148  Scalarcsca 13211   .scvsca 13212   LModclmod 15627   normcnm 18099  NrmGrpcngp 18100  NrmRingcnrg 18102  NrmModcnlm 18103
This theorem is referenced by:  nlmdsdi  18192  nlmdsdir  18193  nlmmul0or  18194  lssnlm  18211  nmoleub2lem3  18596  nmoleub3  18600  cphnmvs  18626
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-nlm 18109
  Copyright terms: Public domain W3C validator