MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ennn Unicode version

Theorem nn0ennn 11041
Description: The nonnegative integers are equinumerous to the natural numbers. (Contributed by NM, 19-Jul-2004.)
Assertion
Ref Expression
nn0ennn  |-  NN0  ~~  NN

Proof of Theorem nn0ennn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0ex 9971 . 2  |-  NN0  e.  _V
2 nnex 9752 . 2  |-  NN  e.  _V
3 nn0p1nn 10003 . 2  |-  ( x  e.  NN0  ->  ( x  +  1 )  e.  NN )
4 nnm1nn0 10005 . 2  |-  ( y  e.  NN  ->  (
y  -  1 )  e.  NN0 )
5 nncn 9754 . . 3  |-  ( y  e.  NN  ->  y  e.  CC )
6 nn0cn 9975 . . 3  |-  ( x  e.  NN0  ->  x  e.  CC )
7 ax-1cn 8795 . . . . . 6  |-  1  e.  CC
8 subadd 9054 . . . . . 6  |-  ( ( y  e.  CC  /\  1  e.  CC  /\  x  e.  CC )  ->  (
( y  -  1 )  =  x  <->  ( 1  +  x )  =  y ) )
97, 8mp3an2 1265 . . . . 5  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( ( y  - 
1 )  =  x  <-> 
( 1  +  x
)  =  y ) )
10 eqcom 2285 . . . . 5  |-  ( x  =  ( y  - 
1 )  <->  ( y  -  1 )  =  x )
11 eqcom 2285 . . . . 5  |-  ( y  =  ( 1  +  x )  <->  ( 1  +  x )  =  y )
129, 10, 113bitr4g 279 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( 1  +  x ) ) )
13 addcom 8998 . . . . . . 7  |-  ( ( 1  e.  CC  /\  x  e.  CC )  ->  ( 1  +  x
)  =  ( x  +  1 ) )
147, 13mpan 651 . . . . . 6  |-  ( x  e.  CC  ->  (
1  +  x )  =  ( x  + 
1 ) )
1514eqeq2d 2294 . . . . 5  |-  ( x  e.  CC  ->  (
y  =  ( 1  +  x )  <->  y  =  ( x  +  1
) ) )
1615adantl 452 . . . 4  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  =  ( 1  +  x )  <-> 
y  =  ( x  +  1 ) ) )
1712, 16bitrd 244 . . 3  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
185, 6, 17syl2anr 464 . 2  |-  ( ( x  e.  NN0  /\  y  e.  NN )  ->  ( x  =  ( y  -  1 )  <-> 
y  =  ( x  +  1 ) ) )
191, 2, 3, 4, 18en3i 6900 1  |-  NN0  ~~  NN
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023  (class class class)co 5858    ~~ cen 6860   CCcc 8735   1c1 8738    + caddc 8740    - cmin 9037   NNcn 9746   NN0cn0 9965
This theorem is referenced by:  nnenom  11042  bitsf1  12637  dyadmbl  18955  aannenlem3  19710  heiborlem3  26537  heibor  26545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-nn 9747  df-n0 9966
  Copyright terms: Public domain W3C validator