MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ind-raph Unicode version

Theorem nn0ind-raph 10112
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction hypothesis. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
nn0ind-raph.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
nn0ind-raph.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
nn0ind-raph.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
nn0ind-raph.5  |-  ps
nn0ind-raph.6  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
Assertion
Ref Expression
nn0ind-raph  |-  ( A  e.  NN0  ->  ta )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem nn0ind-raph
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elnn0 9967 . 2  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
2 dfsbcq2 2994 . . . 4  |-  ( z  =  1  ->  ( [ z  /  x ] ph  <->  [. 1  /  x ]. ph ) )
3 nfv 1605 . . . . 5  |-  F/ x ch
4 nn0ind-raph.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
53, 4sbhypf 2833 . . . 4  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ch ) )
6 nfv 1605 . . . . 5  |-  F/ x th
7 nn0ind-raph.3 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
86, 7sbhypf 2833 . . . 4  |-  ( z  =  ( y  +  1 )  ->  ( [ z  /  x ] ph  <->  th ) )
9 nfv 1605 . . . . 5  |-  F/ x ta
10 nn0ind-raph.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
119, 10sbhypf 2833 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  ta ) )
12 nfsbc1v 3010 . . . . 5  |-  F/ x [. 1  /  x ]. ph
13 1ex 8833 . . . . 5  |-  1  e.  _V
14 c0ex 8832 . . . . . . 7  |-  0  e.  _V
15 0nn0 9980 . . . . . . . . . . . 12  |-  0  e.  NN0
16 eleq1a 2352 . . . . . . . . . . . 12  |-  ( 0  e.  NN0  ->  ( y  =  0  ->  y  e.  NN0 ) )
1715, 16ax-mp 8 . . . . . . . . . . 11  |-  ( y  =  0  ->  y  e.  NN0 )
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15  |-  ps
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2018, 19mpbiri 224 . . . . . . . . . . . . . 14  |-  ( x  =  0  ->  ph )
21 eqeq2 2292 . . . . . . . . . . . . . . . 16  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2221, 4syl6bir 220 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  (
x  =  0  -> 
( ph  <->  ch ) ) )
2322pm5.74d 238 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  (
( x  =  0  ->  ph )  <->  ( x  =  0  ->  ch ) ) )
2420, 23mpbii 202 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  0  ->  ch ) )
2524com12 27 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
y  =  0  ->  ch ) )
2614, 25vtocle 2857 . . . . . . . . . . 11  |-  ( y  =  0  ->  ch )
27 nn0ind-raph.6 . . . . . . . . . . 11  |-  ( y  e.  NN0  ->  ( ch 
->  th ) )
2817, 26, 27sylc 56 . . . . . . . . . 10  |-  ( y  =  0  ->  th )
2928adantr 451 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  th )
30 oveq1 5865 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
y  +  1 )  =  ( 0  +  1 ) )
31 0p1e1 9839 . . . . . . . . . . . . 13  |-  ( 0  +  1 )  =  1
3230, 31syl6eq 2331 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
y  +  1 )  =  1 )
3332eqeq2d 2294 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
x  =  ( y  +  1 )  <->  x  = 
1 ) )
3433, 7syl6bir 220 . . . . . . . . . 10  |-  ( y  =  0  ->  (
x  =  1  -> 
( ph  <->  th ) ) )
3534imp 418 . . . . . . . . 9  |-  ( ( y  =  0  /\  x  =  1 )  ->  ( ph  <->  th )
)
3629, 35mpbird 223 . . . . . . . 8  |-  ( ( y  =  0  /\  x  =  1 )  ->  ph )
3736ex 423 . . . . . . 7  |-  ( y  =  0  ->  (
x  =  1  ->  ph ) )
3814, 37vtocle 2857 . . . . . 6  |-  ( x  =  1  ->  ph )
39 sbceq1a 3001 . . . . . 6  |-  ( x  =  1  ->  ( ph 
<-> 
[. 1  /  x ]. ph ) )
4038, 39mpbid 201 . . . . 5  |-  ( x  =  1  ->  [. 1  /  x ]. ph )
4112, 13, 40vtoclef 2856 . . . 4  |-  [. 1  /  x ]. ph
42 nnnn0 9972 . . . . 5  |-  ( y  e.  NN  ->  y  e.  NN0 )
4342, 27syl 15 . . . 4  |-  ( y  e.  NN  ->  ( ch  ->  th ) )
442, 5, 8, 11, 41, 43nnind 9764 . . 3  |-  ( A  e.  NN  ->  ta )
45 nfv 1605 . . . . 5  |-  F/ x
( 0  =  A  ->  ta )
46 eqeq1 2289 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  <->  0  =  A ) )
4719bicomd 192 . . . . . . . . 9  |-  ( x  =  0  ->  ( ps 
<-> 
ph ) )
4847, 10sylan9bb 680 . . . . . . . 8  |-  ( ( x  =  0  /\  x  =  A )  ->  ( ps  <->  ta )
)
4918, 48mpbii 202 . . . . . . 7  |-  ( ( x  =  0  /\  x  =  A )  ->  ta )
5049ex 423 . . . . . 6  |-  ( x  =  0  ->  (
x  =  A  ->  ta ) )
5146, 50sylbird 226 . . . . 5  |-  ( x  =  0  ->  (
0  =  A  ->  ta ) )
5245, 14, 51vtoclef 2856 . . . 4  |-  ( 0  =  A  ->  ta )
5352eqcoms 2286 . . 3  |-  ( A  =  0  ->  ta )
5444, 53jaoi 368 . 2  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ta )
551, 54sylbi 187 1  |-  ( A  e.  NN0  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623   [wsb 1629    e. wcel 1684   [.wsbc 2991  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740   NNcn 9746   NN0cn0 9965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-nn 9747  df-n0 9966
  Copyright terms: Public domain W3C validator