Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0prpw Unicode version

Theorem nn0prpw 26239
Description: Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
nn0prpw  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  =  B  <->  A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
Distinct variable groups:    n, p, A    B, n, p

Proof of Theorem nn0prpw
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 breq2 4027 . . . 4  |-  ( A  =  B  ->  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) )
21a1d 22 . . 3  |-  ( A  =  B  ->  (
( p  e.  Prime  /\  n  e.  NN )  ->  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )
) )
32ralrimivv 2634 . 2  |-  ( A  =  B  ->  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) )
4 elnn0 9967 . . 3  |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 ) )
5 elnn0 9967 . . . . . . 7  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
6 nnre 9753 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  RR )
7 nnre 9753 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  B  e.  RR )
8 lttri2 8904 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
96, 7, 8syl2an 463 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
109ancoms 439 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
11 nn0prpwlem 26238 . . . . . . . . . . . . . 14  |-  ( B  e.  NN  ->  A. k  e.  NN  ( k  < 
B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B ) ) )
12 breq1 4026 . . . . . . . . . . . . . . . 16  |-  ( k  =  A  ->  (
k  <  B  <->  A  <  B ) )
13 breq2 4027 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  A  ->  (
( p ^ n
)  ||  k  <->  ( p ^ n )  ||  A ) )
1413bibi1d 310 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  A  ->  (
( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  B ) ) )
1514notbid 285 . . . . . . . . . . . . . . . . 17  |-  ( k  =  A  ->  ( -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B )  <->  -.  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
16152rexbidv 2586 . . . . . . . . . . . . . . . 16  |-  ( k  =  A  ->  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B )  <->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
1712, 16imbi12d 311 . . . . . . . . . . . . . . 15  |-  ( k  =  A  ->  (
( k  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B ) )  <-> 
( A  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
1817rspcv 2880 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( A. k  e.  NN  ( k  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  B ) )  ->  ( A  < 
B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
1911, 18mpan9 455 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A  <  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
20 nn0prpwlem 26238 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  A. k  e.  NN  ( k  < 
A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A ) ) )
21 breq1 4026 . . . . . . . . . . . . . . . . 17  |-  ( k  =  B  ->  (
k  <  A  <->  B  <  A ) )
22 breq2 4027 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  B  ->  (
( p ^ n
)  ||  k  <->  ( p ^ n )  ||  B ) )
2322bibi1d 310 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  B  ->  (
( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  ( (
p ^ n ) 
||  B  <->  ( p ^ n )  ||  A ) ) )
24 bicom 191 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( p ^ n
)  ||  B  <->  ( p ^ n )  ||  A )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  B ) )
2523, 24syl6bb 252 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  B  ->  (
( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  B ) ) )
2625notbid 285 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  B  ->  ( -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  -.  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
27262rexbidv 2586 . . . . . . . . . . . . . . . . 17  |-  ( k  =  B  ->  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A )  <->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
2821, 27imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( k  =  B  ->  (
( k  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A ) )  <-> 
( B  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
2928rspcv 2880 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  ( A. k  e.  NN  ( k  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  k  <->  ( p ^ n ) 
||  A ) )  ->  ( B  < 
A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
3020, 29syl5com 26 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( B  e.  NN  ->  ( B  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) ) )
3130impcom 419 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( B  <  A  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
3219, 31jaod 369 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( ( A  < 
B  \/  B  < 
A )  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
3310, 32sylbid 206 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A  =/=  B  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
34 df-ne 2448 . . . . . . . . . . 11  |-  ( A  =/=  B  <->  -.  A  =  B )
35 rexnal 2554 . . . . . . . . . . . . 13  |-  ( E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  <->  -.  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )
)
3635rexbii 2568 . . . . . . . . . . . 12  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  B )  <->  E. p  e.  Prime  -.  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )
)
37 rexnal 2554 . . . . . . . . . . . 12  |-  ( E. p  e.  Prime  -.  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) )
3836, 37bitri 240 . . . . . . . . . . 11  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  B )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) )
3933, 34, 383imtr3g 260 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( -.  A  =  B  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B ) ) )
4039con4d 97 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  A  e.  NN )  ->  ( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )
)
4140ex 423 . . . . . . . 8  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
42 prmunb 12961 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  E. p  e.  Prime  A  <  p
)
43 1nn 9757 . . . . . . . . . . . . . . 15  |-  1  e.  NN
44 prmz 12762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  Prime  ->  p  e.  ZZ )
45 1nn0 9981 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  NN0
46 zexpcl 11118 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  ZZ  /\  1  e.  NN0 )  -> 
( p ^ 1 )  e.  ZZ )
4744, 45, 46sylancl 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  Prime  ->  ( p ^ 1 )  e.  ZZ )
48 dvdsle 12574 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( p ^ 1 )  e.  ZZ  /\  A  e.  NN )  ->  ( ( p ^
1 )  ||  A  ->  ( p ^ 1 )  <_  A )
)
4947, 48sylan 457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  ||  A  -> 
( p ^ 1 )  <_  A )
)
50 prmnn 12761 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  Prime  ->  p  e.  NN )
51 nnre 9753 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  NN  ->  p  e.  RR )
5250, 51syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( p  e.  Prime  ->  p  e.  RR )
53 reexpcl 11120 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  RR  /\  1  e.  NN0 )  -> 
( p ^ 1 )  e.  RR )
5452, 45, 53sylancl 643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  Prime  ->  ( p ^ 1 )  e.  RR )
55 lenlt 8901 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( p ^ 1 )  e.  RR  /\  A  e.  RR )  ->  ( ( p ^
1 )  <_  A  <->  -.  A  <  ( p ^ 1 ) ) )
5654, 6, 55syl2an 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  <_  A  <->  -.  A  <  ( p ^ 1 ) ) )
5750nncnd 9762 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( p  e.  Prime  ->  p  e.  CC )
5857exp1d 11240 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e.  Prime  ->  ( p ^ 1 )  =  p )
5958adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
p ^ 1 )  =  p )
6059breq2d 4035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  ( A  <  ( p ^
1 )  <->  A  <  p ) )
6160notbid 285 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  ( -.  A  <  ( p ^ 1 )  <->  -.  A  <  p ) )
6256, 61bitrd 244 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  <_  A  <->  -.  A  <  p ) )
6349, 62sylibd 205 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  A  e.  NN )  ->  (
( p ^ 1 )  ||  A  ->  -.  A  <  p ) )
6463ancoms 439 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( ( p ^
1 )  ||  A  ->  -.  A  <  p
) )
6564con2d 107 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A  <  p  ->  -.  ( p ^
1 )  ||  A
) )
66653impia 1148 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  -.  ( p ^ 1 )  ||  A )
67 dvds0 12544 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p ^ 1 )  e.  ZZ  ->  (
p ^ 1 ) 
||  0 )
6847, 67syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  Prime  ->  ( p ^ 1 )  ||  0 )
69683ad2ant2 977 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  (
p ^ 1 ) 
||  0 )
70 idd 21 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  A )  ->  ( ( p ^ 1 )  ||  0  ->  ( p ^
1 )  ||  A
) ) )
7169, 70mpid 37 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  A )  ->  ( p ^
1 )  ||  A
) )
7266, 71mtod 168 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  -.  ( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  A ) )
73 bi2 189 . . . . . . . . . . . . . . . 16  |-  ( ( ( p ^ 1 )  ||  A  <->  ( p ^ 1 )  ||  0 )  ->  (
( p ^ 1 )  ||  0  -> 
( p ^ 1 )  ||  A ) )
7472, 73nsyl 113 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  -.  ( ( p ^
1 )  ||  A  <->  ( p ^ 1 ) 
||  0 ) )
75 oveq2 5866 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  1  ->  (
p ^ n )  =  ( p ^
1 ) )
7675breq1d 4033 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  (
( p ^ n
)  ||  A  <->  ( p ^ 1 )  ||  A ) )
7775breq1d 4033 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  (
( p ^ n
)  ||  0  <->  ( p ^ 1 )  ||  0 ) )
7876, 77bibi12d 312 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1  ->  (
( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 )  <->  ( (
p ^ 1 ) 
||  A  <->  ( p ^ 1 )  ||  0 ) ) )
7978notbid 285 . . . . . . . . . . . . . . . 16  |-  ( n  =  1  ->  ( -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 )  <->  -.  (
( p ^ 1 )  ||  A  <->  ( p ^ 1 )  ||  0 ) ) )
8079rspcev 2884 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN  /\  -.  ( ( p ^
1 )  ||  A  <->  ( p ^ 1 ) 
||  0 ) )  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) )
8143, 74, 80sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  p  e.  Prime  /\  A  <  p )  ->  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  0 ) )
82813expia 1153 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  p  e.  Prime )  -> 
( A  <  p  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) ) )
8382reximdva 2655 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( E. p  e.  Prime  A  <  p  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) ) )
8442, 83mpd 14 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) )
85 rexnal 2554 . . . . . . . . . . . . 13  |-  ( E. n  e.  NN  -.  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 )  <->  -.  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  0 ) )
8685rexbii 2568 . . . . . . . . . . . 12  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  0 )  <->  E. p  e.  Prime  -.  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  0 ) )
87 rexnal 2554 . . . . . . . . . . . 12  |-  ( E. p  e.  Prime  -.  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  0 )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) )
8886, 87bitri 240 . . . . . . . . . . 11  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  A  <->  ( p ^ n )  ||  0 )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) )
8984, 88sylib 188 . . . . . . . . . 10  |-  ( A  e.  NN  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  0 ) )
9089pm2.21d 98 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  0 )  ->  A  =  0 ) )
91 breq2 4027 . . . . . . . . . . . 12  |-  ( B  =  0  ->  (
( p ^ n
)  ||  B  <->  ( p ^ n )  ||  0 ) )
9291bibi2d 309 . . . . . . . . . . 11  |-  ( B  =  0  ->  (
( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ n ) 
||  A  <->  ( p ^ n )  ||  0 ) ) )
93922ralbidv 2585 . . . . . . . . . 10  |-  ( B  =  0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  <->  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  0 ) ) )
94 eqeq2 2292 . . . . . . . . . 10  |-  ( B  =  0  ->  ( A  =  B  <->  A  = 
0 ) )
9593, 94imbi12d 311 . . . . . . . . 9  |-  ( B  =  0  ->  (
( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )  <->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  0 )  ->  A  =  0 ) ) )
9690, 95syl5ibr 212 . . . . . . . 8  |-  ( B  =  0  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
9741, 96jaoi 368 . . . . . . 7  |-  ( ( B  e.  NN  \/  B  =  0 )  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )  ->  A  =  B ) ) )
985, 97sylbi 187 . . . . . 6  |-  ( B  e.  NN0  ->  ( A  e.  NN  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
9998com12 27 . . . . 5  |-  ( A  e.  NN  ->  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
100 orcom 376 . . . . . . . . . . 11  |-  ( ( B  e.  NN  \/  B  =  0 )  <-> 
( B  =  0  \/  B  e.  NN ) )
101 df-or 359 . . . . . . . . . . 11  |-  ( ( B  =  0  \/  B  e.  NN )  <-> 
( -.  B  =  0  ->  B  e.  NN ) )
102100, 101bitri 240 . . . . . . . . . 10  |-  ( ( B  e.  NN  \/  B  =  0 )  <-> 
( -.  B  =  0  ->  B  e.  NN ) )
1035, 102bitri 240 . . . . . . . . 9  |-  ( B  e.  NN0  <->  ( -.  B  =  0  ->  B  e.  NN ) )
104 prmunb 12961 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  E. p  e.  Prime  B  <  p
)
105 dvdsle 12574 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( p ^ 1 )  e.  ZZ  /\  B  e.  NN )  ->  ( ( p ^
1 )  ||  B  ->  ( p ^ 1 )  <_  B )
)
10647, 105sylan 457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  ||  B  -> 
( p ^ 1 )  <_  B )
)
107 lenlt 8901 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( p ^ 1 )  e.  RR  /\  B  e.  RR )  ->  ( ( p ^
1 )  <_  B  <->  -.  B  <  ( p ^ 1 ) ) )
10854, 7, 107syl2an 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  <_  B  <->  -.  B  <  ( p ^ 1 ) ) )
10958adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
p ^ 1 )  =  p )
110109breq2d 4035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  ( B  <  ( p ^
1 )  <->  B  <  p ) )
111110notbid 285 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  ( -.  B  <  ( p ^ 1 )  <->  -.  B  <  p ) )
112108, 111bitrd 244 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  <_  B  <->  -.  B  <  p ) )
113106, 112sylibd 205 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( p  e.  Prime  /\  B  e.  NN )  ->  (
( p ^ 1 )  ||  B  ->  -.  B  <  p ) )
114113ancoms 439 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  p  e.  Prime )  -> 
( ( p ^
1 )  ||  B  ->  -.  B  <  p
) )
115114con2d 107 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  p  e.  Prime )  -> 
( B  <  p  ->  -.  ( p ^
1 )  ||  B
) )
1161153impia 1148 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  -.  ( p ^ 1 )  ||  B )
117683ad2ant2 977 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  (
p ^ 1 ) 
||  0 )
118 idd 21 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B )  ->  ( ( p ^ 1 )  ||  0  ->  ( p ^
1 )  ||  B
) ) )
119117, 118mpid 37 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  (
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B )  ->  ( p ^
1 )  ||  B
) )
120116, 119mtod 168 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  -.  ( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B ) )
121 bi1 178 . . . . . . . . . . . . . . . 16  |-  ( ( ( p ^ 1 )  ||  0  <->  (
p ^ 1 ) 
||  B )  -> 
( ( p ^
1 )  ||  0  ->  ( p ^ 1 )  ||  B ) )
122120, 121nsyl 113 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  -.  ( ( p ^
1 )  ||  0  <->  ( p ^ 1 ) 
||  B ) )
12375breq1d 4033 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  (
( p ^ n
)  ||  B  <->  ( p ^ 1 )  ||  B ) )
12477, 123bibi12d 312 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1  ->  (
( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ 1 ) 
||  0  <->  ( p ^ 1 )  ||  B ) ) )
125124notbid 285 . . . . . . . . . . . . . . . 16  |-  ( n  =  1  ->  ( -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B )  <->  -.  (
( p ^ 1 )  ||  0  <->  (
p ^ 1 ) 
||  B ) ) )
126125rspcev 2884 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN  /\  -.  ( ( p ^
1 )  ||  0  <->  ( p ^ 1 ) 
||  B ) )  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) )
12743, 122, 126sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  p  e.  Prime  /\  B  <  p )  ->  E. n  e.  NN  -.  ( ( p ^ n ) 
||  0  <->  ( p ^ n )  ||  B ) )
1281273expia 1153 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  p  e.  Prime )  -> 
( B  <  p  ->  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) ) )
129128reximdva 2655 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  ( E. p  e.  Prime  B  <  p  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) ) )
130104, 129mpd 14 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) )
131 rexnal 2554 . . . . . . . . . . . . 13  |-  ( E. n  e.  NN  -.  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B )  <->  -.  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )
)
132131rexbii 2568 . . . . . . . . . . . 12  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  0  <->  ( p ^ n )  ||  B )  <->  E. p  e.  Prime  -.  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )
)
133 rexnal 2554 . . . . . . . . . . . 12  |-  ( E. p  e.  Prime  -.  A. n  e.  NN  (
( p ^ n
)  ||  0  <->  ( p ^ n )  ||  B )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) )
134132, 133bitri 240 . . . . . . . . . . 11  |-  ( E. p  e.  Prime  E. n  e.  NN  -.  ( ( p ^ n ) 
||  0  <->  ( p ^ n )  ||  B )  <->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) )
135130, 134sylib 188 . . . . . . . . . 10  |-  ( B  e.  NN  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )
)
136135imim2i 13 . . . . . . . . 9  |-  ( ( -.  B  =  0  ->  B  e.  NN )  ->  ( -.  B  =  0  ->  -.  A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )
) )
137103, 136sylbi 187 . . . . . . . 8  |-  ( B  e.  NN0  ->  ( -.  B  =  0  ->  -.  A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  0  <->  ( p ^ n )  ||  B ) ) )
138137con4d 97 . . . . . . 7  |-  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )  ->  B  =  0 ) )
139 eqcom 2285 . . . . . . 7  |-  ( B  =  0  <->  0  =  B )
140138, 139syl6ib 217 . . . . . 6  |-  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  0 
<->  ( p ^ n
)  ||  B )  ->  0  =  B ) )
141 breq2 4027 . . . . . . . . 9  |-  ( A  =  0  ->  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  0 ) )
142141bibi1d 310 . . . . . . . 8  |-  ( A  =  0  ->  (
( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  <->  ( (
p ^ n ) 
||  0  <->  ( p ^ n )  ||  B ) ) )
1431422ralbidv 2585 . . . . . . 7  |-  ( A  =  0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  <->  A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  0  <->  ( p ^ n ) 
||  B ) ) )
144 eqeq1 2289 . . . . . . 7  |-  ( A  =  0  ->  ( A  =  B  <->  0  =  B ) )
145143, 144imbi12d 311 . . . . . 6  |-  ( A  =  0  ->  (
( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )  <->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  0  <->  ( p ^ n )  ||  B )  ->  0  =  B ) ) )
146140, 145syl5ibr 212 . . . . 5  |-  ( A  =  0  ->  ( B  e.  NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B )  ->  A  =  B ) ) )
14799, 146jaoi 368 . . . 4  |-  ( ( A  e.  NN  \/  A  =  0 )  ->  ( B  e. 
NN0  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )
) )
148147imp 418 . . 3  |-  ( ( ( A  e.  NN  \/  A  =  0
)  /\  B  e.  NN0 )  ->  ( A. p  e.  Prime  A. n  e.  NN  ( ( p ^ n )  ||  A 
<->  ( p ^ n
)  ||  B )  ->  A  =  B ) )
1494, 148sylanb 458 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A. p  e. 
Prime  A. n  e.  NN  ( ( p ^
n )  ||  A  <->  ( p ^ n ) 
||  B )  ->  A  =  B )
)
1503, 149impbid2 195 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  =  B  <->  A. p  e.  Prime  A. n  e.  NN  (
( p ^ n
)  ||  A  <->  ( p ^ n )  ||  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   class class class wbr 4023  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    < clt 8867    <_ cle 8868   NNcn 9746   NN0cn0 9965   ZZcz 10024   ^cexp 11104    || cdivides 12531   Primecprime 12758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759
  Copyright terms: Public domain W3C validator