MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nna0r Structured version   Unicode version

Theorem nna0r 6852
Description: Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 6782) so that we can avoid ax-rep 4320, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
nna0r  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )

Proof of Theorem nna0r
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6089 . . 3  |-  ( x  =  (/)  ->  ( (/)  +o  x )  =  (
(/)  +o  (/) ) )
2 id 20 . . 3  |-  ( x  =  (/)  ->  x  =  (/) )
31, 2eqeq12d 2450 . 2  |-  ( x  =  (/)  ->  ( (
(/)  +o  x )  =  x  <->  ( (/)  +o  (/) )  =  (/) ) )
4 oveq2 6089 . . 3  |-  ( x  =  y  ->  ( (/) 
+o  x )  =  ( (/)  +o  y
) )
5 id 20 . . 3  |-  ( x  =  y  ->  x  =  y )
64, 5eqeq12d 2450 . 2  |-  ( x  =  y  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  y
)  =  y ) )
7 oveq2 6089 . . 3  |-  ( x  =  suc  y  -> 
( (/)  +o  x )  =  ( (/)  +o  suc  y ) )
8 id 20 . . 3  |-  ( x  =  suc  y  ->  x  =  suc  y )
97, 8eqeq12d 2450 . 2  |-  ( x  =  suc  y  -> 
( ( (/)  +o  x
)  =  x  <->  ( (/)  +o  suc  y )  =  suc  y ) )
10 oveq2 6089 . . 3  |-  ( x  =  A  ->  ( (/) 
+o  x )  =  ( (/)  +o  A
) )
11 id 20 . . 3  |-  ( x  =  A  ->  x  =  A )
1210, 11eqeq12d 2450 . 2  |-  ( x  =  A  ->  (
( (/)  +o  x )  =  x  <->  ( (/)  +o  A
)  =  A ) )
13 0elon 4634 . . 3  |-  (/)  e.  On
14 oa0 6760 . . 3  |-  ( (/)  e.  On  ->  ( (/)  +o  (/) )  =  (/) )
1513, 14ax-mp 8 . 2  |-  ( (/)  +o  (/) )  =  (/)
16 peano1 4864 . . . 4  |-  (/)  e.  om
17 nnasuc 6849 . . . 4  |-  ( (
(/)  e.  om  /\  y  e.  om )  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
1816, 17mpan 652 . . 3  |-  ( y  e.  om  ->  ( (/) 
+o  suc  y )  =  suc  ( (/)  +o  y
) )
19 suceq 4646 . . . 4  |-  ( (
(/)  +o  y )  =  y  ->  suc  ( (/) 
+o  y )  =  suc  y )
2019eqeq2d 2447 . . 3  |-  ( (
(/)  +o  y )  =  y  ->  ( (
(/)  +o  suc  y )  =  suc  ( (/)  +o  y )  <->  ( (/)  +o  suc  y )  =  suc  y ) )
2118, 20syl5ibcom 212 . 2  |-  ( y  e.  om  ->  (
( (/)  +o  y )  =  y  ->  ( (/) 
+o  suc  y )  =  suc  y ) )
223, 6, 9, 12, 15, 21finds 4871 1  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   (/)c0 3628   Oncon0 4581   suc csuc 4583   omcom 4845  (class class class)co 6081    +o coa 6721
This theorem is referenced by:  nnacom  6860  nnm1  6891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-oadd 6728
  Copyright terms: Public domain W3C validator