MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaass Structured version   Unicode version

Theorem nnaass 6867
Description: Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaass  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )

Proof of Theorem nnaass
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6091 . . . . . 6  |-  ( x  =  C  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  C ) )
2 oveq2 6091 . . . . . . 7  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
32oveq2d 6099 . . . . . 6  |-  ( x  =  C  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  C ) ) )
41, 3eqeq12d 2452 . . . . 5  |-  ( x  =  C  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  C )  =  ( A  +o  ( B  +o  C ) ) ) )
54imbi2d 309 . . . 4  |-  ( x  =  C  ->  (
( ( A  e. 
om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) ) )  <->  ( ( A  e.  om  /\  B  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) ) ) )
6 oveq2 6091 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  +o  B )  +o  x )  =  ( ( A  +o  B )  +o  (/) ) )
7 oveq2 6091 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
87oveq2d 6099 . . . . . 6  |-  ( x  =  (/)  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  (/) ) ) )
96, 8eqeq12d 2452 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( A  +o  B
)  +o  x )  =  ( A  +o  ( B  +o  x
) )  <->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) ) )
10 oveq2 6091 . . . . . 6  |-  ( x  =  y  ->  (
( A  +o  B
)  +o  x )  =  ( ( A  +o  B )  +o  y ) )
11 oveq2 6091 . . . . . . 7  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
1211oveq2d 6099 . . . . . 6  |-  ( x  =  y  ->  ( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  y ) ) )
1310, 12eqeq12d 2452 . . . . 5  |-  ( x  =  y  ->  (
( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) )  <->  ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) ) ) )
14 oveq2 6091 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  +o  B )  +o  x
)  =  ( ( A  +o  B )  +o  suc  y ) )
15 oveq2 6091 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1615oveq2d 6099 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  +o  ( B  +o  x ) )  =  ( A  +o  ( B  +o  suc  y
) ) )
1714, 16eqeq12d 2452 . . . . 5  |-  ( x  =  suc  y  -> 
( ( ( A  +o  B )  +o  x )  =  ( A  +o  ( B  +o  x ) )  <-> 
( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
18 nnacl 6856 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
19 nna0 6849 . . . . . . 7  |-  ( ( A  +o  B )  e.  om  ->  (
( A  +o  B
)  +o  (/) )  =  ( A  +o  B
) )
2018, 19syl 16 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  B
) )
21 nna0 6849 . . . . . . . 8  |-  ( B  e.  om  ->  ( B  +o  (/) )  =  B )
2221oveq2d 6099 . . . . . . 7  |-  ( B  e.  om  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B ) )
2322adantl 454 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  ( B  +o  (/) ) )  =  ( A  +o  B
) )
2420, 23eqtr4d 2473 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  (/) )  =  ( A  +o  ( B  +o  (/) ) ) )
25 suceq 4648 . . . . . . 7  |-  ( ( ( A  +o  B
)  +o  y )  =  ( A  +o  ( B  +o  y
) )  ->  suc  ( ( A  +o  B )  +o  y
)  =  suc  ( A  +o  ( B  +o  y ) ) )
26 nnasuc 6851 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  e.  om  /\  y  e.  om )  ->  ( ( A  +o  B )  +o  suc  y )  =  suc  ( ( A  +o  B )  +o  y
) )
2718, 26sylan 459 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( A  +o  B )  +o 
suc  y )  =  suc  ( ( A  +o  B )  +o  y ) )
28 nnasuc 6851 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
2928oveq2d 6099 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y ) ) )
3029adantl 454 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  ( A  +o  suc  ( B  +o  y
) ) )
31 nnacl 6856 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  y  e.  om )  ->  ( B  +o  y
)  e.  om )
32 nnasuc 6851 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  ( B  +o  y
)  e.  om )  ->  ( A  +o  suc  ( B  +o  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3331, 32sylan2 462 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  suc  ( B  +o  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3430, 33eqtrd 2470 . . . . . . . . 9  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  y  e.  om )
)  ->  ( A  +o  ( B  +o  suc  y ) )  =  suc  ( A  +o  ( B  +o  y
) ) )
3534anassrs 631 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( A  +o  ( B  +o  suc  y
) )  =  suc  ( A  +o  ( B  +o  y ) ) )
3627, 35eqeq12d 2452 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  suc  y )  =  ( A  +o  ( B  +o  suc  y
) )  <->  suc  ( ( A  +o  B )  +o  y )  =  suc  ( A  +o  ( B  +o  y
) ) ) )
3725, 36syl5ibr 214 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  y  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) )
3837expcom 426 . . . . 5  |-  ( y  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( ( A  +o  B )  +o  y )  =  ( A  +o  ( B  +o  y ) )  ->  ( ( A  +o  B )  +o 
suc  y )  =  ( A  +o  ( B  +o  suc  y ) ) ) ) )
399, 13, 17, 24, 38finds2 4875 . . . 4  |-  ( x  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  x
)  =  ( A  +o  ( B  +o  x ) ) ) )
405, 39vtoclga 3019 . . 3  |-  ( C  e.  om  ->  (
( A  e.  om  /\  B  e.  om )  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
4140com12 30 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( C  e.  om  ->  ( ( A  +o  B )  +o  C
)  =  ( A  +o  ( B  +o  C ) ) ) )
42413impia 1151 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  +o  B
)  +o  C )  =  ( A  +o  ( B  +o  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   (/)c0 3630   suc csuc 4585   omcom 4847  (class class class)co 6083    +o coa 6723
This theorem is referenced by:  nndi  6868  nnmsucr  6870  omopthlem1  6900  omopthlem2  6901  addasspi  8774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-recs 6635  df-rdg 6670  df-oadd 6730
  Copyright terms: Public domain W3C validator