MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddcld Structured version   Unicode version

Theorem nnaddcld 10038
Description: Closure of addition of natural numbers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1  |-  ( ph  ->  A  e.  NN )
nnmulcld.2  |-  ( ph  ->  B  e.  NN )
Assertion
Ref Expression
nnaddcld  |-  ( ph  ->  ( A  +  B
)  e.  NN )

Proof of Theorem nnaddcld
StepHypRef Expression
1 nnge1d.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnmulcld.2 . 2  |-  ( ph  ->  B  e.  NN )
3 nnaddcl 10014 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )
41, 2, 3syl2anc 643 1  |-  ( ph  ->  ( A  +  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725  (class class class)co 6073    + caddc 8985   NNcn 9992
This theorem is referenced by:  pythagtriplem4  13185  pythagtriplem6  13187  pythagtriplem7  13188  pythagtriplem11  13191  pythagtriplem13  13193  pythagtriplem15  13195  vdwlem1  13341  vdwlem3  13343  vdwlem5  13345  vdwlem6  13346  vdwlem8  13348  vdwlem9  13349  vdwlem10  13350  vdwlem11  13351  gsumccat  14779  aaliou3lem8  20254  lgsqrlem2  21118  lgseisenlem2  21126  ballotlem5  24749  faclimlem1  25354  faclimlem2  25355  faclim2  25359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-addass 9047  ax-i2m1 9050  ax-1ne0 9051  ax-rrecex 9054  ax-cnre 9055
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-recs 6625  df-rdg 6660  df-nn 9993
  Copyright terms: Public domain W3C validator