MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordex Structured version   Unicode version

Theorem nnawordex 6872
Description: Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnawordex  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nnawordex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simplr 732 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  e.  om )
2 nnon 4843 . . . . . . . 8  |-  ( B  e.  om  ->  B  e.  On )
31, 2syl 16 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  e.  On )
4 simpll 731 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  A  e.  om )
5 nnaword2 6865 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  om )  ->  B  C_  ( A  +o  B ) )
61, 4, 5syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  C_  ( A  +o  B ) )
7 oveq2 6081 . . . . . . . . 9  |-  ( y  =  B  ->  ( A  +o  y )  =  ( A  +o  B
) )
87sseq2d 3368 . . . . . . . 8  |-  ( y  =  B  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  B ) ) )
98elrab 3084 . . . . . . 7  |-  ( B  e.  { y  e.  On  |  B  C_  ( A  +o  y
) }  <->  ( B  e.  On  /\  B  C_  ( A  +o  B
) ) )
103, 6, 9sylanbrc 646 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  e.  {
y  e.  On  |  B  C_  ( A  +o  y ) } )
11 intss1 4057 . . . . . 6  |-  ( B  e.  { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  B
)
1210, 11syl 16 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  B
)
13 ssrab2 3420 . . . . . . . 8  |-  { y  e.  On  |  B  C_  ( A  +o  y
) }  C_  On
14 ne0i 3626 . . . . . . . . 9  |-  ( B  e.  { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )
1510, 14syl 16 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )
16 oninton 4772 . . . . . . . 8  |-  ( ( { y  e.  On  |  B  C_  ( A  +o  y ) } 
C_  On  /\  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  On )
1713, 15, 16sylancr 645 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  On )
18 eloni 4583 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  On  ->  Ord  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
1917, 18syl 16 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  Ord  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
20 ordom 4846 . . . . . 6  |-  Ord  om
21 ordtr2 4617 . . . . . 6  |-  ( ( Ord  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  /\  Ord  om )  ->  ( ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) } 
C_  B  /\  B  e.  om )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  om ) )
2219, 20, 21sylancl 644 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  C_  B  /\  B  e.  om )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  om ) )
2312, 1, 22mp2and 661 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  om )
24 nna0 6839 . . . . . . . . 9  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
2524ad2antrr 707 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  (/) )  =  A )
26 simpr 448 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  A  C_  B
)
2725, 26eqsstrd 3374 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  (/) )  C_  B )
28 oveq2 6081 . . . . . . . 8  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  =  (/) 
->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )  =  ( A  +o  (/) ) )
2928sseq1d 3367 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  =  (/) 
->  ( ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  C_  B  <->  ( A  +o  (/) )  C_  B
) )
3027, 29syl5ibrcom 214 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  (/)  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) 
C_  B ) )
31 simprr 734 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  suc  x )
3231oveq2d 6089 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  ( A  +o  suc  x ) )
334adantr 452 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  A  e.  om )
34 simprl 733 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  x  e.  om )
35 nnasuc 6841 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x
) )
3633, 34, 35syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  suc  x )  =  suc  ( A  +o  x ) )
3732, 36eqtrd 2467 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  suc  ( A  +o  x ) )
38 nnord 4845 . . . . . . . . . . 11  |-  ( B  e.  om  ->  Ord  B )
391, 38syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  Ord  B )
4039adantr 452 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  Ord  B )
41 nnon 4843 . . . . . . . . . . . . 13  |-  ( x  e.  om  ->  x  e.  On )
4241adantr 452 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  x  e.  On )
43 vex 2951 . . . . . . . . . . . . . 14  |-  x  e. 
_V
4443sucid 4652 . . . . . . . . . . . . 13  |-  x  e. 
suc  x
45 simpr 448 . . . . . . . . . . . . 13  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  suc  x )
4644, 45syl5eleqr 2522 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  x  e.  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
47 oveq2 6081 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( A  +o  y )  =  ( A  +o  x
) )
4847sseq2d 3368 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  x ) ) )
4948onnminsb 4776 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
x  e.  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  -.  B  C_  ( A  +o  x ) ) )
5042, 46, 49sylc 58 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x )  ->  -.  B  C_  ( A  +o  x ) )
5150adantl 453 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  -.  B  C_  ( A  +o  x
) )
52 nnacl 6846 . . . . . . . . . . . . . 14  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  x
)  e.  om )
5333, 34, 52syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  x )  e.  om )
54 nnord 4845 . . . . . . . . . . . . 13  |-  ( ( A  +o  x )  e.  om  ->  Ord  ( A  +o  x
) )
5553, 54syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  Ord  ( A  +o  x ) )
56 ordtri1 4606 . . . . . . . . . . . 12  |-  ( ( Ord  B  /\  Ord  ( A  +o  x
) )  ->  ( B  C_  ( A  +o  x )  <->  -.  ( A  +o  x )  e.  B ) )
5740, 55, 56syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( B  C_  ( A  +o  x
)  <->  -.  ( A  +o  x )  e.  B
) )
5857con2bid 320 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( ( A  +o  x )  e.  B  <->  -.  B  C_  ( A  +o  x ) ) )
5951, 58mpbird 224 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  x )  e.  B
)
60 ordsucss 4790 . . . . . . . . 9  |-  ( Ord 
B  ->  ( ( A  +o  x )  e.  B  ->  suc  ( A  +o  x )  C_  B ) )
6140, 59, 60sylc 58 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  suc  ( A  +o  x )  C_  B )
6237, 61eqsstrd 3374 . . . . . . 7  |-  ( ( ( ( A  e. 
om  /\  B  e.  om )  /\  A  C_  B )  /\  (
x  e.  om  /\  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )  ->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  C_  B )
6362rexlimdvaa 2823 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( E. x  e.  om  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  suc  x  ->  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  C_  B )
)
64 nn0suc 4861 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  om 
->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  (/)  \/ 
E. x  e.  om  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )
6523, 64syl 16 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  =  (/)  \/ 
E. x  e.  om  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) }  =  suc  x ) )
6630, 63, 65mpjaod 371 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  C_  B )
67 onint 4767 . . . . . . 7  |-  ( ( { y  e.  On  |  B  C_  ( A  +o  y ) } 
C_  On  /\  { y  e.  On  |  B  C_  ( A  +o  y
) }  =/=  (/) )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  { y  e.  On  |  B  C_  ( A  +o  y
) } )
6813, 15, 67sylancr 645 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  e.  {
y  e.  On  |  B  C_  ( A  +o  y ) } )
69 nfrab1 2880 . . . . . . . . 9  |-  F/_ y { y  e.  On  |  B  C_  ( A  +o  y ) }
7069nfint 4052 . . . . . . . 8  |-  F/_ y |^| { y  e.  On  |  B  C_  ( A  +o  y ) }
71 nfcv 2571 . . . . . . . 8  |-  F/_ y On
72 nfcv 2571 . . . . . . . . 9  |-  F/_ y B
73 nfcv 2571 . . . . . . . . . 10  |-  F/_ y A
74 nfcv 2571 . . . . . . . . . 10  |-  F/_ y  +o
7573, 74, 70nfov 6096 . . . . . . . . 9  |-  F/_ y
( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } )
7672, 75nfss 3333 . . . . . . . 8  |-  F/ y  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )
77 oveq2 6081 . . . . . . . . 9  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( A  +o  y )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) )
7877sseq2d 3368 . . . . . . . 8  |-  ( y  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( B  C_  ( A  +o  y )  <->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) ) )
7970, 71, 76, 78elrabf 3083 . . . . . . 7  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  { y  e.  On  |  B  C_  ( A  +o  y ) }  <->  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  On  /\  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) ) )
8079simprbi 451 . . . . . 6  |-  ( |^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  { y  e.  On  |  B  C_  ( A  +o  y ) }  ->  B 
C_  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } ) )
8168, 80syl 16 . . . . 5  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  B  C_  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } ) )
8266, 81eqssd 3357 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  ( A  +o  |^|
{ y  e.  On  |  B  C_  ( A  +o  y ) } )  =  B )
83 oveq2 6081 . . . . . 6  |-  ( x  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  ( A  +o  x )  =  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y ) } ) )
8483eqeq1d 2443 . . . . 5  |-  ( x  =  |^| { y  e.  On  |  B  C_  ( A  +o  y
) }  ->  (
( A  +o  x
)  =  B  <->  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  B ) )
8584rspcev 3044 . . . 4  |-  ( (
|^| { y  e.  On  |  B  C_  ( A  +o  y ) }  e.  om  /\  ( A  +o  |^| { y  e.  On  |  B  C_  ( A  +o  y
) } )  =  B )  ->  E. x  e.  om  ( A  +o  x )  =  B )
8623, 82, 85syl2anc 643 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  A  C_  B )  ->  E. x  e.  om  ( A  +o  x
)  =  B )
8786ex 424 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  E. x  e.  om  ( A  +o  x
)  =  B ) )
88 nnaword1 6864 . . . . 5  |-  ( ( A  e.  om  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
8988adantlr 696 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
90 sseq2 3362 . . . 4  |-  ( ( A  +o  x )  =  B  ->  ( A  C_  ( A  +o  x )  <->  A  C_  B
) )
9189, 90syl5ibcom 212 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  x  e.  om )  ->  ( ( A  +o  x )  =  B  ->  A  C_  B
) )
9291rexlimdva 2822 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. x  e. 
om  ( A  +o  x )  =  B  ->  A  C_  B
) )
9387, 92impbid 184 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  E. x  e.  om  ( A  +o  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   {crab 2701    C_ wss 3312   (/)c0 3620   |^|cint 4042   Ord word 4572   Oncon0 4573   suc csuc 4575   omcom 4837  (class class class)co 6073    +o coa 6713
This theorem is referenced by:  nnaordex  6873  unfilem1  7363  hashdom  11645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-oadd 6720
  Copyright terms: Public domain W3C validator