MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndivdvds Unicode version

Theorem nndivdvds 12813
Description: Strong form of dvdsval2 12810 for natural numbers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
nndivdvds  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  ||  A  <->  ( A  /  B )  e.  NN ) )

Proof of Theorem nndivdvds
StepHypRef Expression
1 nnz 10259 . . . . 5  |-  ( B  e.  NN  ->  B  e.  ZZ )
21adantl 453 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  ZZ )
3 nnne0 9988 . . . . 5  |-  ( B  e.  NN  ->  B  =/=  0 )
43adantl 453 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  =/=  0 )
5 nnz 10259 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ZZ )
65adantr 452 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  ZZ )
7 dvdsval2 12810 . . . 4  |-  ( ( B  e.  ZZ  /\  B  =/=  0  /\  A  e.  ZZ )  ->  ( B  ||  A  <->  ( A  /  B )  e.  ZZ ) )
82, 4, 6, 7syl3anc 1184 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  ||  A  <->  ( A  /  B )  e.  ZZ ) )
98anbi1d 686 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( B  ||  A  /\  0  <  ( A  /  B ) )  <-> 
( ( A  /  B )  e.  ZZ  /\  0  <  ( A  /  B ) ) ) )
10 nnre 9963 . . . . 5  |-  ( A  e.  NN  ->  A  e.  RR )
1110adantr 452 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  RR )
12 nnre 9963 . . . . 5  |-  ( B  e.  NN  ->  B  e.  RR )
1312adantl 453 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  RR )
14 nngt0 9985 . . . . 5  |-  ( A  e.  NN  ->  0  <  A )
1514adantr 452 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  A )
16 nngt0 9985 . . . . 5  |-  ( B  e.  NN  ->  0  <  B )
1716adantl 453 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  B )
1811, 13, 15, 17divgt0d 9902 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  0  <  ( A  /  B ) )
1918biantrud 494 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  ||  A  <->  ( B  ||  A  /\  0  <  ( A  /  B ) ) ) )
20 elnnz 10248 . . 3  |-  ( ( A  /  B )  e.  NN  <->  ( ( A  /  B )  e.  ZZ  /\  0  < 
( A  /  B
) ) )
2120a1i 11 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  /  B )  e.  NN  <->  ( ( A  /  B
)  e.  ZZ  /\  0  <  ( A  /  B ) ) ) )
229, 19, 213bitr4d 277 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  ||  A  <->  ( A  /  B )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721    =/= wne 2567   class class class wbr 4172  (class class class)co 6040   RRcr 8945   0cc0 8946    < clt 9076    / cdiv 9633   NNcn 9956   ZZcz 10238    || cdivides 12807
This theorem is referenced by:  isprm6  13064  divnumden  13095  gexexlem  15422  ablfac1lem  15581  pgpfac1lem3a  15589  znrrg  16801  dvdsflf1o  20925  mersenne  20964  perfectlem1  20966  perfect  20968  dchrvmasumlem1  21142  dchrisum0flblem2  21156  logsqvma  21189  jm2.20nn  26958  jm2.27c  26968  hashgcdlem  27384  hashgcdeq  27385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-z 10239  df-dvds 12808
  Copyright terms: Public domain W3C validator