Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Unicode version

Theorem nndivsub 24896
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  -  A )  /  C )  e.  NN ) )

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 9753 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
2 nnre 9753 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
3 nnre 9753 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
4 nngt0 9775 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
53, 4jca 518 . . . . . . . . 9  |-  ( C  e.  NN  ->  ( C  e.  RR  /\  0  <  C ) )
6 ltdiv1 9620 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
71, 2, 5, 6syl3an 1224 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
8 nnsub 9784 . . . . . . . 8  |-  ( ( ( A  /  C
)  e.  NN  /\  ( B  /  C
)  e.  NN )  ->  ( ( A  /  C )  < 
( B  /  C
)  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
97, 8sylan9bb 680 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  ( B  /  C
)  e.  NN ) )  ->  ( A  <  B  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
109biimpd 198 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  ( B  /  C
)  e.  NN ) )  ->  ( A  <  B  ->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
1110exp32 588 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  NN  ->  ( ( B  /  C
)  e.  NN  ->  ( A  <  B  -> 
( ( B  /  C )  -  ( A  /  C ) )  e.  NN ) ) ) )
1211com34 77 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  NN  ->  ( A  <  B  -> 
( ( B  /  C )  e.  NN  ->  ( ( B  /  C )  -  ( A  /  C ) )  e.  NN ) ) ) )
1312imp32 422 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  ->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
14 nnaddcl 9768 . . . . . 6  |-  ( ( ( ( B  /  C )  -  ( A  /  C ) )  e.  NN  /\  ( A  /  C )  e.  NN )  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  e.  NN )
1514expcom 424 . . . . 5  |-  ( ( A  /  C )  e.  NN  ->  (
( ( B  /  C )  -  ( A  /  C ) )  e.  NN  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  e.  NN ) )
16 nnsscn 9751 . . . . . . . . . . 11  |-  NN  C_  CC
17 nnne0 9778 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  =/=  0 )
18 divcl 9430 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
1916, 17, 18nnssi2 24894 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  C  e.  NN )  ->  ( A  /  C
)  e.  CC )
20 divcl 9430 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( B  /  C )  e.  CC )
2116, 17, 20nnssi2 24894 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( B  /  C
)  e.  CC )
2219, 21anim12i 549 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  C  e.  NN )  /\  ( B  e.  NN  /\  C  e.  NN ) )  -> 
( ( A  /  C )  e.  CC  /\  ( B  /  C
)  e.  CC ) )
23223impdir 1238 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  CC  /\  ( B  /  C
)  e.  CC ) )
24 npcan 9060 . . . . . . . . 9  |-  ( ( ( B  /  C
)  e.  CC  /\  ( A  /  C
)  e.  CC )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C
) )  =  ( B  /  C ) )
2524ancoms 439 . . . . . . . 8  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  C
)  e.  CC )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C
) )  =  ( B  /  C ) )
2623, 25syl 15 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  =  ( B  /  C
) )
2726eleq1d 2349 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( B  /  C )  -  ( A  /  C
) )  +  ( A  /  C ) )  e.  NN  <->  ( B  /  C )  e.  NN ) )
2827biimpd 198 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( B  /  C )  -  ( A  /  C
) )  +  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
2915, 28sylan9r 639 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( A  /  C
)  e.  NN )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
3029adantrr 697 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( (
( B  /  C
)  -  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
3113, 30impbid 183 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
32 nncn 9754 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  CC )
33323ad2ant2 977 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
34 nncn 9754 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
35343ad2ant1 976 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
36 nncn 9754 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  CC )
3736, 17jca 518 . . . . . 6  |-  ( C  e.  NN  ->  ( C  e.  CC  /\  C  =/=  0 ) )
38373ad2ant3 978 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
39 divsubdir 9456 . . . . 5  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( B  -  A )  /  C
)  =  ( ( B  /  C )  -  ( A  /  C ) ) )
4033, 35, 38, 39syl3anc 1182 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  -  A
)  /  C )  =  ( ( B  /  C )  -  ( A  /  C
) ) )
4140eleq1d 2349 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( B  -  A )  /  C
)  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
4241adantr 451 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( (
( B  -  A
)  /  C )  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
4331, 42bitr4d 247 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  -  A )  /  C )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    < clt 8867    - cmin 9037    / cdiv 9423   NNcn 9746
This theorem is referenced by:  ee7.2aOLD  24900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747
  Copyright terms: Public domain W3C validator