Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivsub Structured version   Unicode version

Theorem nndivsub 26199
Description: Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivsub  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  -  A )  /  C )  e.  NN ) )

Proof of Theorem nndivsub
StepHypRef Expression
1 nnre 9999 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
2 nnre 9999 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
3 nnre 9999 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
4 nngt0 10021 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
53, 4jca 519 . . . . . . . . 9  |-  ( C  e.  NN  ->  ( C  e.  RR  /\  0  <  C ) )
6 ltdiv1 9866 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
71, 2, 5, 6syl3an 1226 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) ) )
8 nnsub 10030 . . . . . . . 8  |-  ( ( ( A  /  C
)  e.  NN  /\  ( B  /  C
)  e.  NN )  ->  ( ( A  /  C )  < 
( B  /  C
)  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
97, 8sylan9bb 681 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  ( B  /  C
)  e.  NN ) )  ->  ( A  <  B  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
109biimpd 199 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  ( B  /  C
)  e.  NN ) )  ->  ( A  <  B  ->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
1110exp32 589 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  NN  ->  ( ( B  /  C
)  e.  NN  ->  ( A  <  B  -> 
( ( B  /  C )  -  ( A  /  C ) )  e.  NN ) ) ) )
1211com34 79 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  NN  ->  ( A  <  B  -> 
( ( B  /  C )  e.  NN  ->  ( ( B  /  C )  -  ( A  /  C ) )  e.  NN ) ) ) )
1312imp32 423 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  ->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
14 nnaddcl 10014 . . . . . 6  |-  ( ( ( ( B  /  C )  -  ( A  /  C ) )  e.  NN  /\  ( A  /  C )  e.  NN )  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  e.  NN )
1514expcom 425 . . . . 5  |-  ( ( A  /  C )  e.  NN  ->  (
( ( B  /  C )  -  ( A  /  C ) )  e.  NN  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  e.  NN ) )
16 nnsscn 9997 . . . . . . . . . . 11  |-  NN  C_  CC
17 nnne0 10024 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  =/=  0 )
18 divcl 9676 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
1916, 17, 18nnssi2 26197 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  C  e.  NN )  ->  ( A  /  C
)  e.  CC )
20 divcl 9676 . . . . . . . . . . 11  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( B  /  C )  e.  CC )
2116, 17, 20nnssi2 26197 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( B  /  C
)  e.  CC )
2219, 21anim12i 550 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  C  e.  NN )  /\  ( B  e.  NN  /\  C  e.  NN ) )  -> 
( ( A  /  C )  e.  CC  /\  ( B  /  C
)  e.  CC ) )
23223impdir 1240 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  C
)  e.  CC  /\  ( B  /  C
)  e.  CC ) )
24 npcan 9306 . . . . . . . . 9  |-  ( ( ( B  /  C
)  e.  CC  /\  ( A  /  C
)  e.  CC )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C
) )  =  ( B  /  C ) )
2524ancoms 440 . . . . . . . 8  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  C
)  e.  CC )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C
) )  =  ( B  /  C ) )
2623, 25syl 16 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( B  /  C )  -  ( A  /  C ) )  +  ( A  /  C ) )  =  ( B  /  C
) )
2726eleq1d 2501 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( B  /  C )  -  ( A  /  C
) )  +  ( A  /  C ) )  e.  NN  <->  ( B  /  C )  e.  NN ) )
2827biimpd 199 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( B  /  C )  -  ( A  /  C
) )  +  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
2915, 28sylan9r 640 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( A  /  C
)  e.  NN )  ->  ( ( ( B  /  C )  -  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
3029adantrr 698 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( (
( B  /  C
)  -  ( A  /  C ) )  e.  NN  ->  ( B  /  C )  e.  NN ) )
3113, 30impbid 184 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
32 nncn 10000 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  CC )
33323ad2ant2 979 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
34 nncn 10000 . . . . . 6  |-  ( A  e.  NN  ->  A  e.  CC )
35343ad2ant1 978 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
36 nncn 10000 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  CC )
3736, 17jca 519 . . . . . 6  |-  ( C  e.  NN  ->  ( C  e.  CC  /\  C  =/=  0 ) )
38373ad2ant3 980 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
39 divsubdir 9702 . . . . 5  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( B  -  A )  /  C
)  =  ( ( B  /  C )  -  ( A  /  C ) ) )
4033, 35, 38, 39syl3anc 1184 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  -  A
)  /  C )  =  ( ( B  /  C )  -  ( A  /  C
) ) )
4140eleq1d 2501 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( B  -  A )  /  C
)  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
4241adantr 452 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( (
( B  -  A
)  /  C )  e.  NN  <->  ( ( B  /  C )  -  ( A  /  C
) )  e.  NN ) )
4331, 42bitr4d 248 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e.  NN  <->  ( ( B  -  A )  /  C )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982    + caddc 8985    < clt 9112    - cmin 9283    / cdiv 9669   NNcn 9992
This theorem is referenced by:  ee7.2aOLD  26203
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993
  Copyright terms: Public domain W3C validator