MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnecl Unicode version

Theorem nnecl 6792
Description: Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnecl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )

Proof of Theorem nnecl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6028 . . . . 5  |-  ( x  =  B  ->  ( A  ^o  x )  =  ( A  ^o  B
) )
21eleq1d 2453 . . . 4  |-  ( x  =  B  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  B )  e.  om ) )
32imbi2d 308 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  ^o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) ) )
4 oveq2 6028 . . . . 5  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
54eleq1d 2453 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  x )  e.  om  <->  ( A  ^o  (/) )  e.  om ) )
6 oveq2 6028 . . . . 5  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
76eleq1d 2453 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  x
)  e.  om  <->  ( A  ^o  y )  e.  om ) )
8 oveq2 6028 . . . . 5  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
98eleq1d 2453 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  x )  e.  om  <->  ( A  ^o  suc  y
)  e.  om )
)
10 nnon 4791 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
11 oe0 6702 . . . . . 6  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
1210, 11syl 16 . . . . 5  |-  ( A  e.  om  ->  ( A  ^o  (/) )  =  1o )
13 df-1o 6660 . . . . . 6  |-  1o  =  suc  (/)
14 peano1 4804 . . . . . . 7  |-  (/)  e.  om
15 peano2 4805 . . . . . . 7  |-  ( (/)  e.  om  ->  suc  (/)  e.  om )
1614, 15ax-mp 8 . . . . . 6  |-  suc  (/)  e.  om
1713, 16eqeltri 2457 . . . . 5  |-  1o  e.  om
1812, 17syl6eqel 2475 . . . 4  |-  ( A  e.  om  ->  ( A  ^o  (/) )  e.  om )
19 nnmcl 6791 . . . . . . . 8  |-  ( ( ( A  ^o  y
)  e.  om  /\  A  e.  om )  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
2019expcom 425 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  ^o  y
)  e.  om  ->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2120adantr 452 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( ( A  ^o  y )  .o  A
)  e.  om )
)
22 nnesuc 6787 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
2322eleq1d 2453 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  suc  y )  e.  om  <->  ( ( A  ^o  y
)  .o  A )  e.  om ) )
2421, 23sylibrd 226 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  ^o  y )  e.  om  ->  ( A  ^o  suc  y )  e.  om ) )
2524expcom 425 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  ^o  y
)  e.  om  ->  ( A  ^o  suc  y
)  e.  om )
) )
265, 7, 9, 18, 25finds2 4813 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  ^o  x )  e.  om ) )
273, 26vtoclga 2960 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  ^o  B )  e.  om ) )
2827impcom 420 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  ^o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   (/)c0 3571   Oncon0 4522   suc csuc 4524   omcom 4785  (class class class)co 6020   1oc1o 6653    .o comu 6658    ^o coe 6659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-omul 6665  df-oexp 6666
  Copyright terms: Public domain W3C validator