MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nneob Structured version   Unicode version

Theorem nneob 6895
Description: A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nneob  |-  ( A  e.  om  ->  ( E. x  e.  om  A  =  ( 2o  .o  x )  <->  -.  E. x  e.  om  suc  A  =  ( 2o  .o  x
) ) )
Distinct variable group:    x, A

Proof of Theorem nneob
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6089 . . . . 5  |-  ( x  =  y  ->  ( 2o  .o  x )  =  ( 2o  .o  y
) )
21eqeq2d 2447 . . . 4  |-  ( x  =  y  ->  ( A  =  ( 2o  .o  x )  <->  A  =  ( 2o  .o  y
) ) )
32cbvrexv 2933 . . 3  |-  ( E. x  e.  om  A  =  ( 2o  .o  x )  <->  E. y  e.  om  A  =  ( 2o  .o  y ) )
4 nnneo 6894 . . . . . . 7  |-  ( ( y  e.  om  /\  x  e.  om  /\  A  =  ( 2o  .o  y ) )  ->  -.  suc  A  =  ( 2o  .o  x ) )
543com23 1159 . . . . . 6  |-  ( ( y  e.  om  /\  A  =  ( 2o  .o  y )  /\  x  e.  om )  ->  -.  suc  A  =  ( 2o 
.o  x ) )
653expa 1153 . . . . 5  |-  ( ( ( y  e.  om  /\  A  =  ( 2o 
.o  y ) )  /\  x  e.  om )  ->  -.  suc  A  =  ( 2o  .o  x
) )
76nrexdv 2809 . . . 4  |-  ( ( y  e.  om  /\  A  =  ( 2o  .o  y ) )  ->  -.  E. x  e.  om  suc  A  =  ( 2o 
.o  x ) )
87rexlimiva 2825 . . 3  |-  ( E. y  e.  om  A  =  ( 2o  .o  y )  ->  -.  E. x  e.  om  suc  A  =  ( 2o  .o  x ) )
93, 8sylbi 188 . 2  |-  ( E. x  e.  om  A  =  ( 2o  .o  x )  ->  -.  E. x  e.  om  suc  A  =  ( 2o  .o  x ) )
10 suceq 4646 . . . . . . 7  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
1110eqeq1d 2444 . . . . . 6  |-  ( y  =  (/)  ->  ( suc  y  =  ( 2o 
.o  x )  <->  suc  (/)  =  ( 2o  .o  x ) ) )
1211rexbidv 2726 . . . . 5  |-  ( y  =  (/)  ->  ( E. x  e.  om  suc  y  =  ( 2o  .o  x )  <->  E. x  e.  om  suc  (/)  =  ( 2o  .o  x ) ) )
1312notbid 286 . . . 4  |-  ( y  =  (/)  ->  ( -. 
E. x  e.  om  suc  y  =  ( 2o  .o  x )  <->  -.  E. x  e.  om  suc  (/)  =  ( 2o  .o  x ) ) )
14 eqeq1 2442 . . . . 5  |-  ( y  =  (/)  ->  ( y  =  ( 2o  .o  x )  <->  (/)  =  ( 2o  .o  x ) ) )
1514rexbidv 2726 . . . 4  |-  ( y  =  (/)  ->  ( E. x  e.  om  y  =  ( 2o  .o  x )  <->  E. x  e.  om  (/)  =  ( 2o 
.o  x ) ) )
1613, 15imbi12d 312 . . 3  |-  ( y  =  (/)  ->  ( ( -.  E. x  e. 
om  suc  y  =  ( 2o  .o  x
)  ->  E. x  e.  om  y  =  ( 2o  .o  x ) )  <->  ( -.  E. x  e.  om  suc  (/)  =  ( 2o  .o  x )  ->  E. x  e.  om  (/)  =  ( 2o  .o  x ) ) ) )
17 suceq 4646 . . . . . . 7  |-  ( y  =  z  ->  suc  y  =  suc  z )
1817eqeq1d 2444 . . . . . 6  |-  ( y  =  z  ->  ( suc  y  =  ( 2o  .o  x )  <->  suc  z  =  ( 2o  .o  x
) ) )
1918rexbidv 2726 . . . . 5  |-  ( y  =  z  ->  ( E. x  e.  om  suc  y  =  ( 2o  .o  x )  <->  E. x  e.  om  suc  z  =  ( 2o  .o  x
) ) )
2019notbid 286 . . . 4  |-  ( y  =  z  ->  ( -.  E. x  e.  om  suc  y  =  ( 2o  .o  x )  <->  -.  E. x  e.  om  suc  z  =  ( 2o  .o  x
) ) )
21 eqeq1 2442 . . . . 5  |-  ( y  =  z  ->  (
y  =  ( 2o 
.o  x )  <->  z  =  ( 2o  .o  x
) ) )
2221rexbidv 2726 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  om  y  =  ( 2o  .o  x )  <->  E. x  e.  om  z  =  ( 2o  .o  x ) ) )
2320, 22imbi12d 312 . . 3  |-  ( y  =  z  ->  (
( -.  E. x  e.  om  suc  y  =  ( 2o  .o  x
)  ->  E. x  e.  om  y  =  ( 2o  .o  x ) )  <->  ( -.  E. x  e.  om  suc  z  =  ( 2o  .o  x )  ->  E. x  e.  om  z  =  ( 2o  .o  x ) ) ) )
24 suceq 4646 . . . . . . 7  |-  ( y  =  suc  z  ->  suc  y  =  suc  suc  z )
2524eqeq1d 2444 . . . . . 6  |-  ( y  =  suc  z  -> 
( suc  y  =  ( 2o  .o  x
)  <->  suc  suc  z  =  ( 2o  .o  x
) ) )
2625rexbidv 2726 . . . . 5  |-  ( y  =  suc  z  -> 
( E. x  e. 
om  suc  y  =  ( 2o  .o  x
)  <->  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x ) ) )
2726notbid 286 . . . 4  |-  ( y  =  suc  z  -> 
( -.  E. x  e.  om  suc  y  =  ( 2o  .o  x
)  <->  -.  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x ) ) )
28 eqeq1 2442 . . . . 5  |-  ( y  =  suc  z  -> 
( y  =  ( 2o  .o  x )  <->  suc  z  =  ( 2o  .o  x ) ) )
2928rexbidv 2726 . . . 4  |-  ( y  =  suc  z  -> 
( E. x  e. 
om  y  =  ( 2o  .o  x )  <->  E. x  e.  om  suc  z  =  ( 2o  .o  x ) ) )
3027, 29imbi12d 312 . . 3  |-  ( y  =  suc  z  -> 
( ( -.  E. x  e.  om  suc  y  =  ( 2o  .o  x )  ->  E. x  e.  om  y  =  ( 2o  .o  x ) )  <->  ( -.  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x )  ->  E. x  e.  om  suc  z  =  ( 2o  .o  x
) ) ) )
31 suceq 4646 . . . . . . 7  |-  ( y  =  A  ->  suc  y  =  suc  A )
3231eqeq1d 2444 . . . . . 6  |-  ( y  =  A  ->  ( suc  y  =  ( 2o  .o  x )  <->  suc  A  =  ( 2o  .o  x
) ) )
3332rexbidv 2726 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  om  suc  y  =  ( 2o  .o  x )  <->  E. x  e.  om  suc  A  =  ( 2o  .o  x
) ) )
3433notbid 286 . . . 4  |-  ( y  =  A  ->  ( -.  E. x  e.  om  suc  y  =  ( 2o  .o  x )  <->  -.  E. x  e.  om  suc  A  =  ( 2o  .o  x
) ) )
35 eqeq1 2442 . . . . 5  |-  ( y  =  A  ->  (
y  =  ( 2o 
.o  x )  <->  A  =  ( 2o  .o  x
) ) )
3635rexbidv 2726 . . . 4  |-  ( y  =  A  ->  ( E. x  e.  om  y  =  ( 2o  .o  x )  <->  E. x  e.  om  A  =  ( 2o  .o  x ) ) )
3734, 36imbi12d 312 . . 3  |-  ( y  =  A  ->  (
( -.  E. x  e.  om  suc  y  =  ( 2o  .o  x
)  ->  E. x  e.  om  y  =  ( 2o  .o  x ) )  <->  ( -.  E. x  e.  om  suc  A  =  ( 2o  .o  x )  ->  E. x  e.  om  A  =  ( 2o  .o  x ) ) ) )
38 peano1 4864 . . . . 5  |-  (/)  e.  om
39 eqid 2436 . . . . 5  |-  (/)  =  (/)
40 oveq2 6089 . . . . . . . 8  |-  ( x  =  (/)  ->  ( 2o 
.o  x )  =  ( 2o  .o  (/) ) )
41 om0x 6763 . . . . . . . 8  |-  ( 2o 
.o  (/) )  =  (/)
4240, 41syl6eq 2484 . . . . . . 7  |-  ( x  =  (/)  ->  ( 2o 
.o  x )  =  (/) )
4342eqeq2d 2447 . . . . . 6  |-  ( x  =  (/)  ->  ( (/)  =  ( 2o  .o  x )  <->  (/)  =  (/) ) )
4443rspcev 3052 . . . . 5  |-  ( (
(/)  e.  om  /\  (/)  =  (/) )  ->  E. x  e.  om  (/)  =  ( 2o  .o  x ) )
4538, 39, 44mp2an 654 . . . 4  |-  E. x  e.  om  (/)  =  ( 2o 
.o  x )
4645a1i 11 . . 3  |-  ( -. 
E. x  e.  om  suc  (/)  =  ( 2o 
.o  x )  ->  E. x  e.  om  (/)  =  ( 2o  .o  x ) )
471eqeq2d 2447 . . . . . . 7  |-  ( x  =  y  ->  (
z  =  ( 2o 
.o  x )  <->  z  =  ( 2o  .o  y
) ) )
4847cbvrexv 2933 . . . . . 6  |-  ( E. x  e.  om  z  =  ( 2o  .o  x )  <->  E. y  e.  om  z  =  ( 2o  .o  y ) )
49 peano2 4865 . . . . . . . . . 10  |-  ( y  e.  om  ->  suc  y  e.  om )
50 2onn 6883 . . . . . . . . . . . 12  |-  2o  e.  om
51 nnmsuc 6850 . . . . . . . . . . . 12  |-  ( ( 2o  e.  om  /\  y  e.  om )  ->  ( 2o  .o  suc  y )  =  ( ( 2o  .o  y
)  +o  2o ) )
5250, 51mpan 652 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( 2o  .o  suc  y )  =  ( ( 2o 
.o  y )  +o  2o ) )
53 df-2o 6725 . . . . . . . . . . . . 13  |-  2o  =  suc  1o
5453oveq2i 6092 . . . . . . . . . . . 12  |-  ( ( 2o  .o  y )  +o  2o )  =  ( ( 2o  .o  y )  +o  suc  1o )
55 nnmcl 6855 . . . . . . . . . . . . . 14  |-  ( ( 2o  e.  om  /\  y  e.  om )  ->  ( 2o  .o  y
)  e.  om )
5650, 55mpan 652 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  ( 2o  .o  y )  e. 
om )
57 1onn 6882 . . . . . . . . . . . . 13  |-  1o  e.  om
58 nnasuc 6849 . . . . . . . . . . . . 13  |-  ( ( ( 2o  .o  y
)  e.  om  /\  1o  e.  om )  -> 
( ( 2o  .o  y )  +o  suc  1o )  =  suc  (
( 2o  .o  y
)  +o  1o ) )
5956, 57, 58sylancl 644 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  (
( 2o  .o  y
)  +o  suc  1o )  =  suc  ( ( 2o  .o  y )  +o  1o ) )
6054, 59syl5req 2481 . . . . . . . . . . 11  |-  ( y  e.  om  ->  suc  ( ( 2o  .o  y )  +o  1o )  =  ( ( 2o  .o  y )  +o  2o ) )
61 nnon 4851 . . . . . . . . . . . . 13  |-  ( ( 2o  .o  y )  e.  om  ->  ( 2o  .o  y )  e.  On )
62 oa1suc 6775 . . . . . . . . . . . . 13  |-  ( ( 2o  .o  y )  e.  On  ->  (
( 2o  .o  y
)  +o  1o )  =  suc  ( 2o 
.o  y ) )
6356, 61, 623syl 19 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  (
( 2o  .o  y
)  +o  1o )  =  suc  ( 2o 
.o  y ) )
64 suceq 4646 . . . . . . . . . . . 12  |-  ( ( ( 2o  .o  y
)  +o  1o )  =  suc  ( 2o 
.o  y )  ->  suc  ( ( 2o  .o  y )  +o  1o )  =  suc  suc  ( 2o  .o  y ) )
6563, 64syl 16 . . . . . . . . . . 11  |-  ( y  e.  om  ->  suc  ( ( 2o  .o  y )  +o  1o )  =  suc  suc  ( 2o  .o  y ) )
6652, 60, 653eqtr2rd 2475 . . . . . . . . . 10  |-  ( y  e.  om  ->  suc  suc  ( 2o  .o  y
)  =  ( 2o 
.o  suc  y )
)
67 oveq2 6089 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( 2o  .o  x
)  =  ( 2o 
.o  suc  y )
)
6867eqeq2d 2447 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( suc  suc  ( 2o 
.o  y )  =  ( 2o  .o  x
)  <->  suc  suc  ( 2o  .o  y )  =  ( 2o  .o  suc  y
) ) )
6968rspcev 3052 . . . . . . . . . 10  |-  ( ( suc  y  e.  om  /\ 
suc  suc  ( 2o  .o  y )  =  ( 2o  .o  suc  y
) )  ->  E. x  e.  om  suc  suc  ( 2o  .o  y )  =  ( 2o  .o  x
) )
7049, 66, 69syl2anc 643 . . . . . . . . 9  |-  ( y  e.  om  ->  E. x  e.  om  suc  suc  ( 2o  .o  y )  =  ( 2o  .o  x
) )
71 suceq 4646 . . . . . . . . . . . 12  |-  ( z  =  ( 2o  .o  y )  ->  suc  z  =  suc  ( 2o 
.o  y ) )
72 suceq 4646 . . . . . . . . . . . 12  |-  ( suc  z  =  suc  ( 2o  .o  y )  ->  suc  suc  z  =  suc  suc  ( 2o  .o  y
) )
7371, 72syl 16 . . . . . . . . . . 11  |-  ( z  =  ( 2o  .o  y )  ->  suc  suc  z  =  suc  suc  ( 2o  .o  y
) )
7473eqeq1d 2444 . . . . . . . . . 10  |-  ( z  =  ( 2o  .o  y )  ->  ( suc  suc  z  =  ( 2o  .o  x )  <->  suc  suc  ( 2o  .o  y )  =  ( 2o  .o  x ) ) )
7574rexbidv 2726 . . . . . . . . 9  |-  ( z  =  ( 2o  .o  y )  ->  ( E. x  e.  om  suc  suc  z  =  ( 2o  .o  x )  <->  E. x  e.  om  suc  suc  ( 2o  .o  y )  =  ( 2o  .o  x ) ) )
7670, 75syl5ibrcom 214 . . . . . . . 8  |-  ( y  e.  om  ->  (
z  =  ( 2o 
.o  y )  ->  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x ) ) )
7776rexlimiv 2824 . . . . . . 7  |-  ( E. y  e.  om  z  =  ( 2o  .o  y )  ->  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x ) )
7877a1i 11 . . . . . 6  |-  ( z  e.  om  ->  ( E. y  e.  om  z  =  ( 2o  .o  y )  ->  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x ) ) )
7948, 78syl5bi 209 . . . . 5  |-  ( z  e.  om  ->  ( E. x  e.  om  z  =  ( 2o  .o  x )  ->  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x ) ) )
8079con3d 127 . . . 4  |-  ( z  e.  om  ->  ( -.  E. x  e.  om  suc  suc  z  =  ( 2o  .o  x )  ->  -.  E. x  e.  om  z  =  ( 2o  .o  x ) ) )
81 con1 122 . . . 4  |-  ( ( -.  E. x  e. 
om  suc  z  =  ( 2o  .o  x
)  ->  E. x  e.  om  z  =  ( 2o  .o  x ) )  ->  ( -.  E. x  e.  om  z  =  ( 2o  .o  x )  ->  E. x  e.  om  suc  z  =  ( 2o  .o  x
) ) )
8280, 81syl9 68 . . 3  |-  ( z  e.  om  ->  (
( -.  E. x  e.  om  suc  z  =  ( 2o  .o  x
)  ->  E. x  e.  om  z  =  ( 2o  .o  x ) )  ->  ( -.  E. x  e.  om  suc  suc  z  =  ( 2o 
.o  x )  ->  E. x  e.  om  suc  z  =  ( 2o  .o  x ) ) ) )
8316, 23, 30, 37, 46, 82finds 4871 . 2  |-  ( A  e.  om  ->  ( -.  E. x  e.  om  suc  A  =  ( 2o 
.o  x )  ->  E. x  e.  om  A  =  ( 2o  .o  x ) ) )
849, 83impbid2 196 1  |-  ( A  e.  om  ->  ( E. x  e.  om  A  =  ( 2o  .o  x )  <->  -.  E. x  e.  om  suc  A  =  ( 2o  .o  x
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   (/)c0 3628   Oncon0 4581   suc csuc 4583   omcom 4845  (class class class)co 6081   1oc1o 6717   2oc2o 6718    +o coa 6721    .o comu 6722
This theorem is referenced by:  fin1a2lem5  8284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-omul 6729
  Copyright terms: Public domain W3C validator