MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnm1 Unicode version

Theorem nnm1 6688
Description: Multiply an element of  om by  1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnm1  |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )

Proof of Theorem nnm1
StepHypRef Expression
1 df-1o 6521 . . 3  |-  1o  =  suc  (/)
21oveq2i 5911 . 2  |-  ( A  .o  1o )  =  ( A  .o  suc  (/) )
3 peano1 4712 . . . 4  |-  (/)  e.  om
4 nnmsuc 6647 . . . 4  |-  ( ( A  e.  om  /\  (/) 
e.  om )  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
53, 4mpan2 652 . . 3  |-  ( A  e.  om  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
6 nnm0 6645 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
76oveq1d 5915 . . 3  |-  ( A  e.  om  ->  (
( A  .o  (/) )  +o  A )  =  (
(/)  +o  A )
)
8 nna0r 6649 . . 3  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
95, 7, 83eqtrd 2352 . 2  |-  ( A  e.  om  ->  ( A  .o  suc  (/) )  =  A )
102, 9syl5eq 2360 1  |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1633    e. wcel 1701   (/)c0 3489   suc csuc 4431   omcom 4693  (class class class)co 5900   1oc1o 6514    +o coa 6518    .o comu 6519
This theorem is referenced by:  nnm2  6689  mulidpi  8555
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-omul 6526
  Copyright terms: Public domain W3C validator