MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcan Unicode version

Theorem nnmcan 6840
Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmcan  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )

Proof of Theorem nnmcan
StepHypRef Expression
1 3anrot 941 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( B  e.  om  /\  C  e. 
om  /\  A  e.  om ) )
2 nnmword 6839 . . . . 5  |-  ( ( ( B  e.  om  /\  C  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( B  C_  C 
<->  ( A  .o  B
)  C_  ( A  .o  C ) ) )
31, 2sylanb 459 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( B  C_  C 
<->  ( A  .o  B
)  C_  ( A  .o  C ) ) )
4 3anrev 947 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  <->  ( C  e.  om  /\  B  e. 
om  /\  A  e.  om ) )
5 nnmword 6839 . . . . 5  |-  ( ( ( C  e.  om  /\  B  e.  om  /\  A  e.  om )  /\  (/)  e.  A )  ->  ( C  C_  B 
<->  ( A  .o  C
)  C_  ( A  .o  B ) ) )
64, 5sylanb 459 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( C  C_  B 
<->  ( A  .o  C
)  C_  ( A  .o  B ) ) )
73, 6anbi12d 692 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( B 
C_  C  /\  C  C_  B )  <->  ( ( A  .o  B )  C_  ( A  .o  C
)  /\  ( A  .o  C )  C_  ( A  .o  B ) ) ) )
87bicomd 193 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( ( A  .o  B ) 
C_  ( A  .o  C )  /\  ( A  .o  C )  C_  ( A  .o  B
) )  <->  ( B  C_  C  /\  C  C_  B ) ) )
9 eqss 3327 . 2  |-  ( ( A  .o  B )  =  ( A  .o  C )  <->  ( ( A  .o  B )  C_  ( A  .o  C
)  /\  ( A  .o  C )  C_  ( A  .o  B ) ) )
10 eqss 3327 . 2  |-  ( B  =  C  <->  ( B  C_  C  /\  C  C_  B ) )
118, 9, 103bitr4g 280 1  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    C_ wss 3284   (/)c0 3592   omcom 4808  (class class class)co 6044    .o comu 6685
This theorem is referenced by:  mulcanpi  8737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-recs 6596  df-rdg 6631  df-oadd 6691  df-omul 6692
  Copyright terms: Public domain W3C validator