MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmord Unicode version

Theorem nnmord 6842
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmord  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )

Proof of Theorem nnmord
StepHypRef Expression
1 nnmordi 6841 . . . . . 6  |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
21ex 424 . . . . 5  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
32com23 74 . . . 4  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( A  e.  B  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
43imp3a 421 . . 3  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( A  e.  B  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
543adant1 975 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
6 ne0i 3602 . . . . . . . 8  |-  ( ( C  .o  A )  e.  ( C  .o  B )  ->  ( C  .o  B )  =/=  (/) )
7 nnm0r 6820 . . . . . . . . . 10  |-  ( B  e.  om  ->  ( (/) 
.o  B )  =  (/) )
8 oveq1 6055 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( C  .o  B )  =  ( (/)  .o  B
) )
98eqeq1d 2420 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( ( C  .o  B )  =  (/)  <->  ( (/)  .o  B
)  =  (/) ) )
107, 9syl5ibrcom 214 . . . . . . . . 9  |-  ( B  e.  om  ->  ( C  =  (/)  ->  ( C  .o  B )  =  (/) ) )
1110necon3d 2613 . . . . . . . 8  |-  ( B  e.  om  ->  (
( C  .o  B
)  =/=  (/)  ->  C  =/=  (/) ) )
126, 11syl5 30 . . . . . . 7  |-  ( B  e.  om  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
1312adantr 452 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
14 nnord 4820 . . . . . . . 8  |-  ( C  e.  om  ->  Ord  C )
15 ord0eln0 4603 . . . . . . . 8  |-  ( Ord 
C  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
1614, 15syl 16 . . . . . . 7  |-  ( C  e.  om  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
1716adantl 453 . . . . . 6  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
1813, 17sylibrd 226 . . . . 5  |-  ( ( B  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  (/)  e.  C ) )
19183adant1 975 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  (/) 
e.  C ) )
20 oveq2 6056 . . . . . . . . . 10  |-  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B
) )
2120a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B ) ) )
22 nnmordi 6841 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
23223adantl2 1114 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
2421, 23orim12d 812 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( A  =  B  \/  B  e.  A )  ->  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) ) ) )
2524con3d 127 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( -.  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A ) ) )
26 simpl3 962 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  C  e.  om )
27 simpl1 960 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  A  e.  om )
28 nnmcl 6822 . . . . . . . . 9  |-  ( ( C  e.  om  /\  A  e.  om )  ->  ( C  .o  A
)  e.  om )
2926, 27, 28syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  om )
30 simpl2 961 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  B  e.  om )
31 nnmcl 6822 . . . . . . . . 9  |-  ( ( C  e.  om  /\  B  e.  om )  ->  ( C  .o  B
)  e.  om )
3226, 30, 31syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  B )  e.  om )
33 nnord 4820 . . . . . . . . 9  |-  ( ( C  .o  A )  e.  om  ->  Ord  ( C  .o  A
) )
34 nnord 4820 . . . . . . . . 9  |-  ( ( C  .o  B )  e.  om  ->  Ord  ( C  .o  B
) )
35 ordtri2 4584 . . . . . . . . 9  |-  ( ( Ord  ( C  .o  A )  /\  Ord  ( C  .o  B
) )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  <->  -.  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) ) ) )
3633, 34, 35syl2an 464 . . . . . . . 8  |-  ( ( ( C  .o  A
)  e.  om  /\  ( C  .o  B
)  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  <->  -.  ( ( C  .o  A )  =  ( C  .o  B )  \/  ( C  .o  B )  e.  ( C  .o  A ) ) ) )
3729, 32, 36syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  <->  -.  ( ( C  .o  A )  =  ( C  .o  B
)  \/  ( C  .o  B )  e.  ( C  .o  A
) ) ) )
38 nnord 4820 . . . . . . . . 9  |-  ( A  e.  om  ->  Ord  A )
39 nnord 4820 . . . . . . . . 9  |-  ( B  e.  om  ->  Ord  B )
40 ordtri2 4584 . . . . . . . . 9  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
4138, 39, 40syl2an 464 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
4227, 30, 41syl2anc 643 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
4325, 37, 423imtr4d 260 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  ->  A  e.  B ) )
4443ex 424 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  ( (/) 
e.  C  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  A  e.  B )
) )
4544com23 74 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( (/)  e.  C  ->  A  e.  B )
) )
4619, 45mpdd 38 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  A  e.  B )
)
4746, 19jcad 520 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( A  e.  B  /\  (/)  e.  C ) ) )
485, 47impbid 184 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   (/)c0 3596   Ord word 4548   omcom 4812  (class class class)co 6048    .o comu 6689
This theorem is referenced by:  nnmword  6843  nnneo  6861  ltmpi  8745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-recs 6600  df-rdg 6635  df-oadd 6695  df-omul 6696
  Copyright terms: Public domain W3C validator