MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmulcli Structured version   Unicode version

Theorem nnmulcli 10017
Description: Closure of multiplication of natural numbers. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nnmulcli.1  |-  A  e.  NN
nnmulcli.2  |-  B  e.  NN
Assertion
Ref Expression
nnmulcli  |-  ( A  x.  B )  e.  NN

Proof of Theorem nnmulcli
StepHypRef Expression
1 nnmulcli.1 . 2  |-  A  e.  NN
2 nnmulcli.2 . 2  |-  B  e.  NN
3 nnmulcl 10016 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
41, 2, 3mp2an 654 1  |-  ( A  x.  B )  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 1725  (class class class)co 6074    x. cmul 8988   NNcn 9993
This theorem is referenced by:  numnncl2  10392  ef01bndlem  12778  pockthi  13268  dec5nprm  13395  dec2nprm  13396  log2ublem1  20779  log2ublem2  20780  log2ub  20782  bclbnd  21057  bposlem8  21068  lgsdir2lem5  21104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rrecex 9055  ax-cnre 9056
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-recs 6626  df-rdg 6661  df-nn 9994
  Copyright terms: Public domain W3C validator