MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnneo Structured version   Unicode version

Theorem nnneo 6897
Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
nnneo  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  =  ( 2o  .o  A ) )  ->  -.  suc  C  =  ( 2o  .o  B ) )

Proof of Theorem nnneo
StepHypRef Expression
1 nnon 4854 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
2 onnbtwn 4676 . . . 4  |-  ( A  e.  On  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
31, 2syl 16 . . 3  |-  ( A  e.  om  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
433ad2ant1 979 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  =  ( 2o  .o  A ) )  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
5 suceq 4649 . . . . 5  |-  ( C  =  ( 2o  .o  A )  ->  suc  C  =  suc  ( 2o 
.o  A ) )
65eqeq1d 2446 . . . 4  |-  ( C  =  ( 2o  .o  A )  ->  ( suc  C  =  ( 2o 
.o  B )  <->  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) ) )
763ad2ant3 981 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  =  ( 2o  .o  A ) )  -> 
( suc  C  =  ( 2o  .o  B
)  <->  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) ) )
8 ovex 6109 . . . . . . . 8  |-  ( 2o 
.o  A )  e. 
_V
98sucid 4663 . . . . . . 7  |-  ( 2o 
.o  A )  e. 
suc  ( 2o  .o  A )
10 eleq2 2499 . . . . . . 7  |-  ( suc  ( 2o  .o  A
)  =  ( 2o 
.o  B )  -> 
( ( 2o  .o  A )  e.  suc  ( 2o  .o  A
)  <->  ( 2o  .o  A )  e.  ( 2o  .o  B ) ) )
119, 10mpbii 204 . . . . . 6  |-  ( suc  ( 2o  .o  A
)  =  ( 2o 
.o  B )  -> 
( 2o  .o  A
)  e.  ( 2o 
.o  B ) )
12 2onn 6886 . . . . . . . 8  |-  2o  e.  om
13 nnmord 6878 . . . . . . . 8  |-  ( ( A  e.  om  /\  B  e.  om  /\  2o  e.  om )  ->  (
( A  e.  B  /\  (/)  e.  2o )  <-> 
( 2o  .o  A
)  e.  ( 2o 
.o  B ) ) )
1412, 13mp3an3 1269 . . . . . . 7  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  /\  (/)  e.  2o ) 
<->  ( 2o  .o  A
)  e.  ( 2o 
.o  B ) ) )
15 simpl 445 . . . . . . 7  |-  ( ( A  e.  B  /\  (/) 
e.  2o )  ->  A  e.  B )
1614, 15syl6bir 222 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( 2o  .o  A )  e.  ( 2o  .o  B )  ->  A  e.  B
) )
1711, 16syl5 31 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  ( 2o 
.o  A )  =  ( 2o  .o  B
)  ->  A  e.  B ) )
18 simpr 449 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) )  ->  suc  ( 2o 
.o  A )  =  ( 2o  .o  B
) )
19 nnmcl 6858 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  A  e.  om )  ->  ( 2o  .o  A
)  e.  om )
2012, 19mpan 653 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( 2o  .o  A )  e. 
om )
21 nnon 4854 . . . . . . . . . . . 12  |-  ( ( 2o  .o  A )  e.  om  ->  ( 2o  .o  A )  e.  On )
22 oa1suc 6778 . . . . . . . . . . . 12  |-  ( ( 2o  .o  A )  e.  On  ->  (
( 2o  .o  A
)  +o  1o )  =  suc  ( 2o 
.o  A ) )
2320, 21, 223syl 19 . . . . . . . . . . 11  |-  ( A  e.  om  ->  (
( 2o  .o  A
)  +o  1o )  =  suc  ( 2o 
.o  A ) )
24 1onn 6885 . . . . . . . . . . . . . . . 16  |-  1o  e.  om
2524elexi 2967 . . . . . . . . . . . . . . 15  |-  1o  e.  _V
2625sucid 4663 . . . . . . . . . . . . . 14  |-  1o  e.  suc  1o
27 df-2o 6728 . . . . . . . . . . . . . 14  |-  2o  =  suc  1o
2826, 27eleqtrri 2511 . . . . . . . . . . . . 13  |-  1o  e.  2o
29 nnaord 6865 . . . . . . . . . . . . . . 15  |-  ( ( 1o  e.  om  /\  2o  e.  om  /\  ( 2o  .o  A )  e. 
om )  ->  ( 1o  e.  2o  <->  ( ( 2o  .o  A )  +o  1o )  e.  ( ( 2o  .o  A
)  +o  2o ) ) )
3024, 12, 29mp3an12 1270 . . . . . . . . . . . . . 14  |-  ( ( 2o  .o  A )  e.  om  ->  ( 1o  e.  2o  <->  ( ( 2o  .o  A )  +o  1o )  e.  ( ( 2o  .o  A
)  +o  2o ) ) )
3120, 30syl 16 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  ( 1o  e.  2o  <->  ( ( 2o  .o  A )  +o  1o )  e.  ( ( 2o  .o  A
)  +o  2o ) ) )
3228, 31mpbii 204 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  (
( 2o  .o  A
)  +o  1o )  e.  ( ( 2o 
.o  A )  +o  2o ) )
33 nnmsuc 6853 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  A  e.  om )  ->  ( 2o  .o  suc  A )  =  ( ( 2o  .o  A )  +o  2o ) )
3412, 33mpan 653 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( 2o  .o  suc  A )  =  ( ( 2o 
.o  A )  +o  2o ) )
3532, 34eleqtrrd 2515 . . . . . . . . . . 11  |-  ( A  e.  om  ->  (
( 2o  .o  A
)  +o  1o )  e.  ( 2o  .o  suc  A ) )
3623, 35eqeltrrd 2513 . . . . . . . . . 10  |-  ( A  e.  om  ->  suc  ( 2o  .o  A
)  e.  ( 2o 
.o  suc  A )
)
3736ad2antrr 708 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) )  ->  suc  ( 2o 
.o  A )  e.  ( 2o  .o  suc  A ) )
3818, 37eqeltrrd 2513 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) )  ->  ( 2o  .o  B )  e.  ( 2o  .o  suc  A
) )
39 peano2 4868 . . . . . . . . . . 11  |-  ( A  e.  om  ->  suc  A  e.  om )
40 nnmord 6878 . . . . . . . . . . . 12  |-  ( ( B  e.  om  /\  suc  A  e.  om  /\  2o  e.  om )  -> 
( ( B  e. 
suc  A  /\  (/)  e.  2o ) 
<->  ( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
4112, 40mp3an3 1269 . . . . . . . . . . 11  |-  ( ( B  e.  om  /\  suc  A  e.  om )  ->  ( ( B  e. 
suc  A  /\  (/)  e.  2o ) 
<->  ( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
4239, 41sylan2 462 . . . . . . . . . 10  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( B  e. 
suc  A  /\  (/)  e.  2o ) 
<->  ( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
4342ancoms 441 . . . . . . . . 9  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( B  e. 
suc  A  /\  (/)  e.  2o ) 
<->  ( 2o  .o  B
)  e.  ( 2o 
.o  suc  A )
) )
4443adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) )  ->  ( ( B  e.  suc  A  /\  (/) 
e.  2o )  <->  ( 2o  .o  B )  e.  ( 2o  .o  suc  A
) ) )
4538, 44mpbird 225 . . . . . . 7  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) )  ->  ( B  e.  suc  A  /\  (/)  e.  2o ) )
4645simpld 447 . . . . . 6  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  suc  ( 2o  .o  A )  =  ( 2o  .o  B ) )  ->  B  e.  suc  A )
4746ex 425 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  ( 2o 
.o  A )  =  ( 2o  .o  B
)  ->  B  e.  suc  A ) )
4817, 47jcad 521 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  ( 2o 
.o  A )  =  ( 2o  .o  B
)  ->  ( A  e.  B  /\  B  e. 
suc  A ) ) )
49483adant3 978 . . 3  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  =  ( 2o  .o  A ) )  -> 
( suc  ( 2o  .o  A )  =  ( 2o  .o  B )  ->  ( A  e.  B  /\  B  e. 
suc  A ) ) )
507, 49sylbid 208 . 2  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  =  ( 2o  .o  A ) )  -> 
( suc  C  =  ( 2o  .o  B
)  ->  ( A  e.  B  /\  B  e. 
suc  A ) ) )
514, 50mtod 171 1  |-  ( ( A  e.  om  /\  B  e.  om  /\  C  =  ( 2o  .o  A ) )  ->  -.  suc  C  =  ( 2o  .o  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   (/)c0 3630   Oncon0 4584   suc csuc 4586   omcom 4848  (class class class)co 6084   1oc1o 6720   2oc2o 6721    +o coa 6724    .o comu 6725
This theorem is referenced by:  nneob  6898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-omul 6732
  Copyright terms: Public domain W3C validator