Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssnn0 Structured version   Unicode version

Theorem nnssnn0 10226
 Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3512 . 2
2 df-n0 10224 . 2
31, 2sseqtr4i 3383 1
 Colors of variables: wff set class Syntax hints:   cun 3320   wss 3322  csn 3816  cc0 8992  cn 10002  cn0 10223 This theorem is referenced by:  nnnn0  10230  nnnn0d  10276  nthruz  12853  bitsfzolem  12948  ramub1  13398  ramcl  13399  ply1divex  20061  pserdvlem2  20346  hbtlem5  27311 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-un 3327  df-in 3329  df-ss 3336  df-n0 10224
 Copyright terms: Public domain W3C validator