MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsub Unicode version

Theorem nnsub 9784
Description: Subtraction of natural numbers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnsub  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <->  ( B  -  A )  e.  NN ) )

Proof of Theorem nnsub
Dummy variables  z  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4027 . . . . . 6  |-  ( x  =  1  ->  (
z  <  x  <->  z  <  1 ) )
2 oveq1 5865 . . . . . . 7  |-  ( x  =  1  ->  (
x  -  z )  =  ( 1  -  z ) )
32eleq1d 2349 . . . . . 6  |-  ( x  =  1  ->  (
( x  -  z
)  e.  NN  <->  ( 1  -  z )  e.  NN ) )
41, 3imbi12d 311 . . . . 5  |-  ( x  =  1  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  1  ->  ( 1  -  z
)  e.  NN ) ) )
54ralbidv 2563 . . . 4  |-  ( x  =  1  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  1  ->  ( 1  -  z
)  e.  NN ) ) )
6 breq2 4027 . . . . . 6  |-  ( x  =  y  ->  (
z  <  x  <->  z  <  y ) )
7 oveq1 5865 . . . . . . 7  |-  ( x  =  y  ->  (
x  -  z )  =  ( y  -  z ) )
87eleq1d 2349 . . . . . 6  |-  ( x  =  y  ->  (
( x  -  z
)  e.  NN  <->  ( y  -  z )  e.  NN ) )
96, 8imbi12d 311 . . . . 5  |-  ( x  =  y  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  y  ->  ( y  -  z
)  e.  NN ) ) )
109ralbidv 2563 . . . 4  |-  ( x  =  y  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  y  ->  ( y  -  z
)  e.  NN ) ) )
11 breq2 4027 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
z  <  x  <->  z  <  ( y  +  1 ) ) )
12 oveq1 5865 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  -  z )  =  ( ( y  +  1 )  -  z ) )
1312eleq1d 2349 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  -  z
)  e.  NN  <->  ( (
y  +  1 )  -  z )  e.  NN ) )
1411, 13imbi12d 311 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
1514ralbidv 2563 . . . 4  |-  ( x  =  ( y  +  1 )  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
16 breq2 4027 . . . . . 6  |-  ( x  =  B  ->  (
z  <  x  <->  z  <  B ) )
17 oveq1 5865 . . . . . . 7  |-  ( x  =  B  ->  (
x  -  z )  =  ( B  -  z ) )
1817eleq1d 2349 . . . . . 6  |-  ( x  =  B  ->  (
( x  -  z
)  e.  NN  <->  ( B  -  z )  e.  NN ) )
1916, 18imbi12d 311 . . . . 5  |-  ( x  =  B  ->  (
( z  <  x  ->  ( x  -  z
)  e.  NN )  <-> 
( z  <  B  ->  ( B  -  z
)  e.  NN ) ) )
2019ralbidv 2563 . . . 4  |-  ( x  =  B  ->  ( A. z  e.  NN  ( z  <  x  ->  ( x  -  z
)  e.  NN )  <->  A. z  e.  NN  ( z  <  B  ->  ( B  -  z
)  e.  NN ) ) )
21 nnnlt1 9776 . . . . . 6  |-  ( z  e.  NN  ->  -.  z  <  1 )
2221pm2.21d 98 . . . . 5  |-  ( z  e.  NN  ->  (
z  <  1  ->  ( 1  -  z )  e.  NN ) )
2322rgen 2608 . . . 4  |-  A. z  e.  NN  ( z  <  1  ->  ( 1  -  z )  e.  NN )
24 breq1 4026 . . . . . . 7  |-  ( z  =  x  ->  (
z  <  y  <->  x  <  y ) )
25 oveq2 5866 . . . . . . . 8  |-  ( z  =  x  ->  (
y  -  z )  =  ( y  -  x ) )
2625eleq1d 2349 . . . . . . 7  |-  ( z  =  x  ->  (
( y  -  z
)  e.  NN  <->  ( y  -  x )  e.  NN ) )
2724, 26imbi12d 311 . . . . . 6  |-  ( z  =  x  ->  (
( z  <  y  ->  ( y  -  z
)  e.  NN )  <-> 
( x  <  y  ->  ( y  -  x
)  e.  NN ) ) )
2827cbvralv 2764 . . . . 5  |-  ( A. z  e.  NN  (
z  <  y  ->  ( y  -  z )  e.  NN )  <->  A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN ) )
29 nncn 9754 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
3029adantr 451 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  y  e.  CC )
31 ax-1cn 8795 . . . . . . . . . . . 12  |-  1  e.  CC
32 pncan 9057 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
3330, 31, 32sylancl 643 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( y  +  1 )  -  1 )  =  y )
34 simpl 443 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  y  e.  NN )
3533, 34eqeltrd 2357 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( y  +  1 )  -  1 )  e.  NN )
36 oveq2 5866 . . . . . . . . . . 11  |-  ( z  =  1  ->  (
( y  +  1 )  -  z )  =  ( ( y  +  1 )  - 
1 ) )
3736eleq1d 2349 . . . . . . . . . 10  |-  ( z  =  1  ->  (
( ( y  +  1 )  -  z
)  e.  NN  <->  ( (
y  +  1 )  -  1 )  e.  NN ) )
3835, 37syl5ibrcom 213 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  ->  ( ( y  +  1 )  -  z )  e.  NN ) )
3938a1dd 42 . . . . . . . 8  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) )
4039a1dd 42 . . . . . . 7  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  ->  ( A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN )  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) ) )
41 breq1 4026 . . . . . . . . . 10  |-  ( x  =  ( z  - 
1 )  ->  (
x  <  y  <->  ( z  -  1 )  < 
y ) )
42 oveq2 5866 . . . . . . . . . . 11  |-  ( x  =  ( z  - 
1 )  ->  (
y  -  x )  =  ( y  -  ( z  -  1 ) ) )
4342eleq1d 2349 . . . . . . . . . 10  |-  ( x  =  ( z  - 
1 )  ->  (
( y  -  x
)  e.  NN  <->  ( y  -  ( z  - 
1 ) )  e.  NN ) )
4441, 43imbi12d 311 . . . . . . . . 9  |-  ( x  =  ( z  - 
1 )  ->  (
( x  <  y  ->  ( y  -  x
)  e.  NN )  <-> 
( ( z  - 
1 )  <  y  ->  ( y  -  (
z  -  1 ) )  e.  NN ) ) )
4544rspcv 2880 . . . . . . . 8  |-  ( ( z  -  1 )  e.  NN  ->  ( A. x  e.  NN  ( x  <  y  -> 
( y  -  x
)  e.  NN )  ->  ( ( z  -  1 )  < 
y  ->  ( y  -  ( z  - 
1 ) )  e.  NN ) ) )
46 nnre 9753 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  RR )
47 nnre 9753 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  RR )
48 1re 8837 . . . . . . . . . . . 12  |-  1  e.  RR
49 ltsubadd 9244 . . . . . . . . . . . 12  |-  ( ( z  e.  RR  /\  1  e.  RR  /\  y  e.  RR )  ->  (
( z  -  1 )  <  y  <->  z  <  ( y  +  1 ) ) )
5048, 49mp3an2 1265 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( ( z  - 
1 )  <  y  <->  z  <  ( y  +  1 ) ) )
5146, 47, 50syl2anr 464 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  - 
1 )  <  y  <->  z  <  ( y  +  1 ) ) )
52 nncn 9754 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  e.  CC )
53 subsub3 9079 . . . . . . . . . . . . 13  |-  ( ( y  e.  CC  /\  z  e.  CC  /\  1  e.  CC )  ->  (
y  -  ( z  -  1 ) )  =  ( ( y  +  1 )  -  z ) )
5431, 53mp3an3 1266 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( y  -  (
z  -  1 ) )  =  ( ( y  +  1 )  -  z ) )
5529, 52, 54syl2an 463 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( y  -  (
z  -  1 ) )  =  ( ( y  +  1 )  -  z ) )
5655eleq1d 2349 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( y  -  ( z  -  1 ) )  e.  NN  <->  ( ( y  +  1 )  -  z )  e.  NN ) )
5751, 56imbi12d 311 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( ( z  -  1 )  < 
y  ->  ( y  -  ( z  - 
1 ) )  e.  NN )  <->  ( z  <  ( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) )
5857biimpd 198 . . . . . . . 8  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( ( z  -  1 )  < 
y  ->  ( y  -  ( z  - 
1 ) )  e.  NN )  ->  (
z  <  ( y  +  1 )  -> 
( ( y  +  1 )  -  z
)  e.  NN ) ) )
5945, 58syl9r 67 . . . . . . 7  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  - 
1 )  e.  NN  ->  ( A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN )  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) ) )
60 nn1m1nn 9766 . . . . . . . 8  |-  ( z  e.  NN  ->  (
z  =  1  \/  ( z  -  1 )  e.  NN ) )
6160adantl 452 . . . . . . 7  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  =  1  \/  ( z  - 
1 )  e.  NN ) )
6240, 59, 61mpjaod 370 . . . . . 6  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( A. x  e.  NN  ( x  < 
y  ->  ( y  -  x )  e.  NN )  ->  ( z  < 
( y  +  1 )  ->  ( (
y  +  1 )  -  z )  e.  NN ) ) )
6362ralrimdva 2633 . . . . 5  |-  ( y  e.  NN  ->  ( A. x  e.  NN  ( x  <  y  -> 
( y  -  x
)  e.  NN )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
6428, 63syl5bi 208 . . . 4  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  ( y  -  z
)  e.  NN )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  ( ( y  +  1 )  -  z )  e.  NN ) ) )
655, 10, 15, 20, 23, 64nnind 9764 . . 3  |-  ( B  e.  NN  ->  A. z  e.  NN  ( z  < 
B  ->  ( B  -  z )  e.  NN ) )
66 breq1 4026 . . . . 5  |-  ( z  =  A  ->  (
z  <  B  <->  A  <  B ) )
67 oveq2 5866 . . . . . 6  |-  ( z  =  A  ->  ( B  -  z )  =  ( B  -  A ) )
6867eleq1d 2349 . . . . 5  |-  ( z  =  A  ->  (
( B  -  z
)  e.  NN  <->  ( B  -  A )  e.  NN ) )
6966, 68imbi12d 311 . . . 4  |-  ( z  =  A  ->  (
( z  <  B  ->  ( B  -  z
)  e.  NN )  <-> 
( A  <  B  ->  ( B  -  A
)  e.  NN ) ) )
7069rspcva 2882 . . 3  |-  ( ( A  e.  NN  /\  A. z  e.  NN  (
z  <  B  ->  ( B  -  z )  e.  NN ) )  ->  ( A  < 
B  ->  ( B  -  A )  e.  NN ) )
7165, 70sylan2 460 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  ->  ( B  -  A
)  e.  NN ) )
72 nngt0 9775 . . 3  |-  ( ( B  -  A )  e.  NN  ->  0  <  ( B  -  A
) )
73 nnre 9753 . . . 4  |-  ( A  e.  NN  ->  A  e.  RR )
74 nnre 9753 . . . 4  |-  ( B  e.  NN  ->  B  e.  RR )
75 posdif 9267 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
7673, 74, 75syl2an 463 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
7772, 76syl5ibr 212 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( B  -  A )  e.  NN  ->  A  <  B ) )
7871, 77impbid 183 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <->  ( B  -  A )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    - cmin 9037   NNcn 9746
This theorem is referenced by:  nnsubi  9785  nn0sub  10014  faclbnd4lem4  11309  pythagtriplem13  12880  vdwlem12  13039  perfectlem1  20468  nndivsub  24896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747
  Copyright terms: Public domain W3C validator