MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnullss Unicode version

Theorem nnullss 4235
Description: A non-empty class (even if proper) has a non-empty subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
nnullss  |-  ( A  =/=  (/)  ->  E. x
( x  C_  A  /\  x  =/=  (/) ) )
Distinct variable group:    x, A

Proof of Theorem nnullss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 n0 3464 . 2  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
2 vex 2791 . . . . 5  |-  y  e. 
_V
32snss 3748 . . . 4  |-  ( y  e.  A  <->  { y }  C_  A )
42snnz 3744 . . . . 5  |-  { y }  =/=  (/)
5 snex 4216 . . . . . 6  |-  { y }  e.  _V
6 sseq1 3199 . . . . . . 7  |-  ( x  =  { y }  ->  ( x  C_  A 
<->  { y }  C_  A ) )
7 neeq1 2454 . . . . . . 7  |-  ( x  =  { y }  ->  ( x  =/=  (/) 
<->  { y }  =/=  (/) ) )
86, 7anbi12d 691 . . . . . 6  |-  ( x  =  { y }  ->  ( ( x 
C_  A  /\  x  =/=  (/) )  <->  ( {
y }  C_  A  /\  { y }  =/=  (/) ) ) )
95, 8spcev 2875 . . . . 5  |-  ( ( { y }  C_  A  /\  { y }  =/=  (/) )  ->  E. x
( x  C_  A  /\  x  =/=  (/) ) )
104, 9mpan2 652 . . . 4  |-  ( { y }  C_  A  ->  E. x ( x 
C_  A  /\  x  =/=  (/) ) )
113, 10sylbi 187 . . 3  |-  ( y  e.  A  ->  E. x
( x  C_  A  /\  x  =/=  (/) ) )
1211exlimiv 1666 . 2  |-  ( E. y  y  e.  A  ->  E. x ( x 
C_  A  /\  x  =/=  (/) ) )
131, 12sylbi 187 1  |-  ( A  =/=  (/)  ->  E. x
( x  C_  A  /\  x  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   (/)c0 3455   {csn 3640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator