MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwof Unicode version

Theorem nnwof 10475
Description: Well-ordering principle: any non-empty set of natural numbers has a least element. This version allows  x and  y to be present in  A as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1  |-  F/_ x A
nnwof.2  |-  F/_ y A
Assertion
Ref Expression
nnwof  |-  ( ( A  C_  NN  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem nnwof
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwo 10474 . 2  |-  ( ( A  C_  NN  /\  A  =/=  (/) )  ->  E. w  e.  A  A. v  e.  A  w  <_  v )
2 nfcv 2523 . . 3  |-  F/_ w A
3 nnwof.1 . . 3  |-  F/_ x A
4 nfv 1626 . . . 4  |-  F/ x  w  <_  v
53, 4nfral 2702 . . 3  |-  F/ x A. v  e.  A  w  <_  v
6 nfv 1626 . . 3  |-  F/ w A. y  e.  A  x  <_  y
7 breq1 4156 . . . . 5  |-  ( w  =  x  ->  (
w  <_  v  <->  x  <_  v ) )
87ralbidv 2669 . . . 4  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. v  e.  A  x  <_  v ) )
9 nfcv 2523 . . . . 5  |-  F/_ v A
10 nnwof.2 . . . . 5  |-  F/_ y A
11 nfv 1626 . . . . 5  |-  F/ y  x  <_  v
12 nfv 1626 . . . . 5  |-  F/ v  x  <_  y
13 breq2 4157 . . . . 5  |-  ( v  =  y  ->  (
x  <_  v  <->  x  <_  y ) )
149, 10, 11, 12, 13cbvralf 2869 . . . 4  |-  ( A. v  e.  A  x  <_  v  <->  A. y  e.  A  x  <_  y )
158, 14syl6bb 253 . . 3  |-  ( w  =  x  ->  ( A. v  e.  A  w  <_  v  <->  A. y  e.  A  x  <_  y ) )
162, 3, 5, 6, 15cbvrexf 2870 . 2  |-  ( E. w  e.  A  A. v  e.  A  w  <_  v  <->  E. x  e.  A  A. y  e.  A  x  <_  y )
171, 16sylib 189 1  |-  ( ( A  C_  NN  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   F/_wnfc 2510    =/= wne 2550   A.wral 2649   E.wrex 2650    C_ wss 3263   (/)c0 3571   class class class wbr 4153    <_ cle 9054   NNcn 9932
This theorem is referenced by:  nnwos  10476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-n0 10154  df-z 10215  df-uz 10421
  Copyright terms: Public domain W3C validator