Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodenselem3 Structured version   Unicode version

Theorem nodenselem3 25640
Description: Lemma for nodense 25646. If one surreal is older than another, then there is an ordinal at which they are not equal. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodenselem3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
) )
Distinct variable groups:    A, a    B, a

Proof of Theorem nodenselem3
StepHypRef Expression
1 bdayval 25605 . . . 4  |-  ( B  e.  No  ->  ( bday `  B )  =  dom  B )
21adantl 454 . . 3  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( bday `  B
)  =  dom  B
)
32eleq2d 2505 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  <->  ( bday `  A )  e.  dom  B ) )
4 bdayelon 25637 . . . 4  |-  ( bday `  A )  e.  On
5 nosgnn0 25615 . . . . . . . . 9  |-  -.  (/)  e.  { 1o ,  2o }
6 norn 25608 . . . . . . . . . . . 12  |-  ( B  e.  No  ->  ran  B 
C_  { 1o ,  2o } )
76adantr 453 . . . . . . . . . . 11  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  ->  ran  B  C_  { 1o ,  2o } )
8 nofun 25606 . . . . . . . . . . . 12  |-  ( B  e.  No  ->  Fun  B )
9 fvelrn 5868 . . . . . . . . . . . 12  |-  ( ( Fun  B  /\  ( bday `  A )  e. 
dom  B )  -> 
( B `  ( bday `  A ) )  e.  ran  B )
108, 9sylan 459 . . . . . . . . . . 11  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  e.  ran  B )
117, 10sseldd 3351 . . . . . . . . . 10  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  e.  { 1o ,  2o } )
12 eleq1 2498 . . . . . . . . . 10  |-  ( ( B `  ( bday `  A ) )  =  (/)  ->  ( ( B `
 ( bday `  A
) )  e.  { 1o ,  2o }  <->  (/)  e.  { 1o ,  2o } ) )
1311, 12syl5ibcom 213 . . . . . . . . 9  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( ( B `  ( bday `  A )
)  =  (/)  ->  (/)  e.  { 1o ,  2o } ) )
145, 13mtoi 172 . . . . . . . 8  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  ->  -.  ( B `  ( bday `  A ) )  =  (/) )
1514neneqad 2676 . . . . . . 7  |-  ( ( B  e.  No  /\  ( bday `  A )  e.  dom  B )  -> 
( B `  ( bday `  A ) )  =/=  (/) )
1615adantll 696 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( B `  ( bday `  A
) )  =/=  (/) )
17 fvnobday 25639 . . . . . . 7  |-  ( A  e.  No  ->  ( A `  ( bday `  A ) )  =  (/) )
1817ad2antrr 708 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( A `  ( bday `  A
) )  =  (/) )
1916, 18neeqtrrd 2627 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( B `  ( bday `  A
) )  =/=  ( A `  ( bday `  A ) ) )
2019necomd 2689 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  ( A `  ( bday `  A
) )  =/=  ( B `  ( bday `  A ) ) )
21 fveq2 5730 . . . . . 6  |-  ( a  =  ( bday `  A
)  ->  ( A `  a )  =  ( A `  ( bday `  A ) ) )
22 fveq2 5730 . . . . . 6  |-  ( a  =  ( bday `  A
)  ->  ( B `  a )  =  ( B `  ( bday `  A ) ) )
2321, 22neeq12d 2618 . . . . 5  |-  ( a  =  ( bday `  A
)  ->  ( ( A `  a )  =/=  ( B `  a
)  <->  ( A `  ( bday `  A )
)  =/=  ( B `
 ( bday `  A
) ) ) )
2423rspcev 3054 . . . 4  |-  ( ( ( bday `  A
)  e.  On  /\  ( A `  ( bday `  A ) )  =/=  ( B `  ( bday `  A ) ) )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
)
254, 20, 24sylancr 646 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( bday `  A
)  e.  dom  B
)  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
)
2625ex 425 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  dom  B  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a ) ) )
273, 26sylbid 208 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  e.  ( bday `  B )  ->  E. a  e.  On  ( A `  a )  =/=  ( B `  a )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708    C_ wss 3322   (/)c0 3630   {cpr 3817   Oncon0 4583   dom cdm 4880   ran crn 4881   Fun wfun 5450   ` cfv 5456   1oc1o 6719   2oc2o 6720   Nocsur 25597   bdaycbday 25599
This theorem is referenced by:  nodenselem4  25641
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-suc 4589  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-1o 6726  df-2o 6727  df-no 25600  df-bday 25602
  Copyright terms: Public domain W3C validator