![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > noel | Unicode version |
Description: The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
noel |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 3429 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eldifn 3430 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | pm2.65i 167 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | df-nul 3589 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | eleq2i 2468 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | mtbir 291 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: n0i 3593 n0f 3596 rex0 3601 abvor0 3605 rab0 3608 un0 3612 in0 3613 0ss 3616 disj 3628 r19.2zb 3678 ral0 3692 int0 4024 iun0 4107 0iun 4108 ord0eln0 4595 nlim0 4599 nsuceq0 4621 xp0r 4915 dm0 5042 dm0rn0 5045 reldm0 5046 elimasni 5190 cnv0 5234 co02 5342 dffv3 5683 fv01 5722 bropopvvv 6385 mpt20 6386 tz7.44-2 6624 0we1 6709 omordi 6768 omeulem1 6784 nnmordi 6833 omabs 6849 omsmolem 6855 0er 6899 omxpenlem 7168 cantnfle 7582 en3lp 7628 r1sdom 7656 r1pwss 7666 alephordi 7911 axdc3lem2 8287 zorn2lem7 8338 brdom3 8362 canthwe 8482 nlt1pi 8739 xrinfm0 10871 elixx3g 10885 elfz2 11006 om2uzlti 11245 hashf1lem2 11660 sum0 12470 fsumsplit 12488 sumsplit 12507 fsum2dlem 12509 sadc0 12921 sadcp1 12922 saddisjlem 12931 smu01lem 12952 smu01 12953 smu02 12954 prmreclem5 13243 vdwap0 13299 ram0 13345 0catg 13867 oduclatb 14526 0g0 14664 cntzrcl 15081 gexdvds 15173 gsumzsplit 15484 dprdcntz2 15551 00lss 15973 mplcoe1 16483 mplcoe2 16485 mplrcl 16505 strov2rcl 16586 00ply1bas 16589 0ntop 16933 haust1 17370 hauspwdom 17517 kqcldsat 17718 tsmssplit 18134 ustn0 18203 0met 18349 itg11 19536 itg0 19624 bddmulibl 19683 fsumharmonic 20803 ppiublem2 20940 lgsdir2lem3 21062 nbgra0edg 21397 uvtx01vtx 21454 eupath2lem1 21652 helloworld 21712 isarchi 24205 measvuni 24521 sibf0 24602 prod0 25222 fprod2dlem 25257 pw2f1ocnv 26998 dsmmbas2 27071 dsmmfi 27072 pmtrfrn 27268 psgnunilem5 27285 stoweidlem34 27650 2wlkonot3v 28072 2spthonot3v 28073 en3lpVD 28666 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2385 |
This theorem depends on definitions: df-bi 178 df-an 361 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-clab 2391 df-cleq 2397 df-clel 2400 df-nfc 2529 df-v 2918 df-dif 3283 df-nul 3589 |
Copyright terms: Public domain | W3C validator |