MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nominpos Unicode version

Theorem nominpos 9948
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
Assertion
Ref Expression
nominpos  |-  -.  E. x  e.  RR  (
0  <  x  /\  -.  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )
Distinct variable group:    x, y

Proof of Theorem nominpos
StepHypRef Expression
1 rehalfcl 9938 . . . 4  |-  ( x  e.  RR  ->  (
x  /  2 )  e.  RR )
2 2re 9815 . . . . . . 7  |-  2  e.  RR
3 2pos 9828 . . . . . . 7  |-  0  <  2
4 divgt0 9624 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( x  /  2 ) )
52, 3, 4mpanr12 666 . . . . . 6  |-  ( ( x  e.  RR  /\  0  <  x )  -> 
0  <  ( x  /  2 ) )
65ex 423 . . . . 5  |-  ( x  e.  RR  ->  (
0  <  x  ->  0  <  ( x  / 
2 ) ) )
7 halfpos 9942 . . . . . 6  |-  ( x  e.  RR  ->  (
0  <  x  <->  ( x  /  2 )  < 
x ) )
87biimpd 198 . . . . 5  |-  ( x  e.  RR  ->  (
0  <  x  ->  ( x  /  2 )  <  x ) )
96, 8jcad 519 . . . 4  |-  ( x  e.  RR  ->  (
0  <  x  ->  ( 0  <  ( x  /  2 )  /\  ( x  /  2
)  <  x )
) )
10 breq2 4027 . . . . . 6  |-  ( y  =  ( x  / 
2 )  ->  (
0  <  y  <->  0  <  ( x  /  2 ) ) )
11 breq1 4026 . . . . . 6  |-  ( y  =  ( x  / 
2 )  ->  (
y  <  x  <->  ( x  /  2 )  < 
x ) )
1210, 11anbi12d 691 . . . . 5  |-  ( y  =  ( x  / 
2 )  ->  (
( 0  <  y  /\  y  <  x )  <-> 
( 0  <  (
x  /  2 )  /\  ( x  / 
2 )  <  x
) ) )
1312rspcev 2884 . . . 4  |-  ( ( ( x  /  2
)  e.  RR  /\  ( 0  <  (
x  /  2 )  /\  ( x  / 
2 )  <  x
) )  ->  E. y  e.  RR  ( 0  < 
y  /\  y  <  x ) )
141, 9, 13ee12an 1353 . . 3  |-  ( x  e.  RR  ->  (
0  <  x  ->  E. y  e.  RR  (
0  <  y  /\  y  <  x ) ) )
15 iman 413 . . 3  |-  ( ( 0  <  x  ->  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )  <->  -.  ( 0  <  x  /\  -.  E. y  e.  RR  (
0  <  y  /\  y  <  x ) ) )
1614, 15sylib 188 . 2  |-  ( x  e.  RR  ->  -.  ( 0  <  x  /\  -.  E. y  e.  RR  ( 0  < 
y  /\  y  <  x ) ) )
1716nrex 2645 1  |-  -.  E. x  e.  RR  (
0  <  x  /\  -.  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023  (class class class)co 5858   RRcr 8736   0cc0 8737    < clt 8867    / cdiv 9423   2c2 9795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804
  Copyright terms: Public domain W3C validator