MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nominpos Unicode version

Theorem nominpos 9995
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
Assertion
Ref Expression
nominpos  |-  -.  E. x  e.  RR  (
0  <  x  /\  -.  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )
Distinct variable group:    x, y

Proof of Theorem nominpos
StepHypRef Expression
1 rehalfcl 9985 . . . 4  |-  ( x  e.  RR  ->  (
x  /  2 )  e.  RR )
2 2re 9860 . . . . . . 7  |-  2  e.  RR
3 2pos 9873 . . . . . . 7  |-  0  <  2
4 divgt0 9669 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( x  /  2 ) )
52, 3, 4mpanr12 666 . . . . . 6  |-  ( ( x  e.  RR  /\  0  <  x )  -> 
0  <  ( x  /  2 ) )
65ex 423 . . . . 5  |-  ( x  e.  RR  ->  (
0  <  x  ->  0  <  ( x  / 
2 ) ) )
7 halfpos 9989 . . . . . 6  |-  ( x  e.  RR  ->  (
0  <  x  <->  ( x  /  2 )  < 
x ) )
87biimpd 198 . . . . 5  |-  ( x  e.  RR  ->  (
0  <  x  ->  ( x  /  2 )  <  x ) )
96, 8jcad 519 . . . 4  |-  ( x  e.  RR  ->  (
0  <  x  ->  ( 0  <  ( x  /  2 )  /\  ( x  /  2
)  <  x )
) )
10 breq2 4064 . . . . . 6  |-  ( y  =  ( x  / 
2 )  ->  (
0  <  y  <->  0  <  ( x  /  2 ) ) )
11 breq1 4063 . . . . . 6  |-  ( y  =  ( x  / 
2 )  ->  (
y  <  x  <->  ( x  /  2 )  < 
x ) )
1210, 11anbi12d 691 . . . . 5  |-  ( y  =  ( x  / 
2 )  ->  (
( 0  <  y  /\  y  <  x )  <-> 
( 0  <  (
x  /  2 )  /\  ( x  / 
2 )  <  x
) ) )
1312rspcev 2918 . . . 4  |-  ( ( ( x  /  2
)  e.  RR  /\  ( 0  <  (
x  /  2 )  /\  ( x  / 
2 )  <  x
) )  ->  E. y  e.  RR  ( 0  < 
y  /\  y  <  x ) )
141, 9, 13ee12an 1354 . . 3  |-  ( x  e.  RR  ->  (
0  <  x  ->  E. y  e.  RR  (
0  <  y  /\  y  <  x ) ) )
15 iman 413 . . 3  |-  ( ( 0  <  x  ->  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )  <->  -.  ( 0  <  x  /\  -.  E. y  e.  RR  (
0  <  y  /\  y  <  x ) ) )
1614, 15sylib 188 . 2  |-  ( x  e.  RR  ->  -.  ( 0  <  x  /\  -.  E. y  e.  RR  ( 0  < 
y  /\  y  <  x ) ) )
1716nrex 2679 1  |-  -.  E. x  e.  RR  (
0  <  x  /\  -.  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   E.wrex 2578   class class class wbr 4060  (class class class)co 5900   RRcr 8781   0cc0 8782    < clt 8912    / cdiv 9468   2c2 9840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-po 4351  df-so 4352  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-2 9849
  Copyright terms: Public domain W3C validator