MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nordeq Unicode version

Theorem nordeq 4560
Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
nordeq  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )

Proof of Theorem nordeq
StepHypRef Expression
1 ordirr 4559 . . . 4  |-  ( Ord 
A  ->  -.  A  e.  A )
2 eleq1 2464 . . . . 5  |-  ( A  =  B  ->  ( A  e.  A  <->  B  e.  A ) )
32notbid 286 . . . 4  |-  ( A  =  B  ->  ( -.  A  e.  A  <->  -.  B  e.  A ) )
41, 3syl5ibcom 212 . . 3  |-  ( Ord 
A  ->  ( A  =  B  ->  -.  B  e.  A ) )
54necon2ad 2615 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  A  =/= 
B ) )
65imp 419 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   Ord word 4540
This theorem is referenced by:  phplem1  7245  php  7250  ordtop  26090  limsucncmpi  26099
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-eprel 4454  df-fr 4501  df-we 4503  df-ord 4544
  Copyright terms: Public domain W3C validator