HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpar2i Unicode version

Theorem normpar2i 21735
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar2.1  |-  A  e. 
~H
normpar2.2  |-  B  e. 
~H
normpar2.3  |-  C  e. 
~H
Assertion
Ref Expression
normpar2i  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  =  ( ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )  -  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )

Proof of Theorem normpar2i
StepHypRef Expression
1 2re 9815 . . . . . 6  |-  2  e.  RR
2 normpar2.1 . . . . . . . . 9  |-  A  e. 
~H
3 normpar2.3 . . . . . . . . 9  |-  C  e. 
~H
42, 3hvsubcli 21601 . . . . . . . 8  |-  ( A  -h  C )  e. 
~H
54normcli 21710 . . . . . . 7  |-  ( normh `  ( A  -h  C
) )  e.  RR
65resqcli 11189 . . . . . 6  |-  ( (
normh `  ( A  -h  C ) ) ^
2 )  e.  RR
71, 6remulcli 8851 . . . . 5  |-  ( 2  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  e.  RR
8 normpar2.2 . . . . . . . . 9  |-  B  e. 
~H
98, 3hvsubcli 21601 . . . . . . . 8  |-  ( B  -h  C )  e. 
~H
109normcli 21710 . . . . . . 7  |-  ( normh `  ( B  -h  C
) )  e.  RR
1110resqcli 11189 . . . . . 6  |-  ( (
normh `  ( B  -h  C ) ) ^
2 )  e.  RR
121, 11remulcli 8851 . . . . 5  |-  ( 2  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  e.  RR
137, 12readdcli 8850 . . . 4  |-  ( ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  e.  RR
1413recni 8849 . . 3  |-  ( ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  e.  CC
152, 8hvaddcli 21598 . . . . . . 7  |-  ( A  +h  B )  e. 
~H
16 2cn 9816 . . . . . . . 8  |-  2  e.  CC
1716, 3hvmulcli 21594 . . . . . . 7  |-  ( 2  .h  C )  e. 
~H
1815, 17hvsubcli 21601 . . . . . 6  |-  ( ( A  +h  B )  -h  ( 2  .h  C ) )  e. 
~H
1918normcli 21710 . . . . 5  |-  ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) )  e.  RR
2019resqcli 11189 . . . 4  |-  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )  e.  RR
2120recni 8849 . . 3  |-  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )  e.  CC
222, 8hvsubcli 21601 . . . . . 6  |-  ( A  -h  B )  e. 
~H
2322normcli 21710 . . . . 5  |-  ( normh `  ( A  -h  B
) )  e.  RR
2423resqcli 11189 . . . 4  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  e.  RR
2524recni 8849 . . 3  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  e.  CC
26 4cn 9820 . . . . . 6  |-  4  e.  CC
276recni 8849 . . . . . 6  |-  ( (
normh `  ( A  -h  C ) ) ^
2 )  e.  CC
2826, 27mulcli 8842 . . . . 5  |-  ( 4  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  e.  CC
2911recni 8849 . . . . . 6  |-  ( (
normh `  ( B  -h  C ) ) ^
2 )  e.  CC
3026, 29mulcli 8842 . . . . 5  |-  ( 4  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  e.  CC
31 2ne0 9829 . . . . 5  |-  2  =/=  0
3228, 30, 16, 31divdiri 9517 . . . 4  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  /  2 )  =  ( ( ( 4  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  /  2
)  +  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 ) )
3328, 30addcomi 9003 . . . . . . . 8  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  =  ( ( 4  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  +  ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) ) )
34 neg1cn 9813 . . . . . . . . . . . . . . . . 17  |-  -u 1  e.  CC
3534, 17hvmulcli 21594 . . . . . . . . . . . . . . . 16  |-  ( -u
1  .h  ( 2  .h  C ) )  e.  ~H
3634, 22hvmulcli 21594 . . . . . . . . . . . . . . . 16  |-  ( -u
1  .h  ( A  -h  B ) )  e.  ~H
3715, 35, 36hvadd32i 21633 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( 2  .h  C ) ) )  +h  ( -u
1  .h  ( A  -h  B ) ) )  =  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( A  -h  B ) ) )  +h  ( -u
1  .h  ( 2  .h  C ) ) )
3815, 17hvsubvali 21600 . . . . . . . . . . . . . . . 16  |-  ( ( A  +h  B )  -h  ( 2  .h  C ) )  =  ( ( A  +h  B )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
3938oveq1i 5868 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( ( ( A  +h  B )  +h  ( -u 1  .h  ( 2  .h  C
) ) )  +h  ( -u 1  .h  ( A  -h  B
) ) )
4016, 8hvmulcli 21594 . . . . . . . . . . . . . . . . 17  |-  ( 2  .h  B )  e. 
~H
4140, 17hvsubvali 21600 . . . . . . . . . . . . . . . 16  |-  ( ( 2  .h  B )  -h  ( 2  .h  C ) )  =  ( ( 2  .h  B )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
422, 8hvcomi 21599 . . . . . . . . . . . . . . . . . . 19  |-  ( A  +h  B )  =  ( B  +h  A
)
432, 8hvnegdii 21641 . . . . . . . . . . . . . . . . . . 19  |-  ( -u
1  .h  ( A  -h  B ) )  =  ( B  -h  A )
4442, 43oveq12i 5870 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +h  B )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( ( B  +h  A )  +h  ( B  -h  A ) )
458, 2hvsubcan2i 21643 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  +h  A )  +h  ( B  -h  A ) )  =  ( 2  .h  B
)
4644, 45eqtri 2303 . . . . . . . . . . . . . . . . 17  |-  ( ( A  +h  B )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( 2  .h  B
)
4746oveq1i 5868 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( A  -h  B ) ) )  +h  ( -u
1  .h  ( 2  .h  C ) ) )  =  ( ( 2  .h  B )  +h  ( -u 1  .h  ( 2  .h  C
) ) )
4841, 47eqtr4i 2306 . . . . . . . . . . . . . . 15  |-  ( ( 2  .h  B )  -h  ( 2  .h  C ) )  =  ( ( ( A  +h  B )  +h  ( -u 1  .h  ( A  -h  B
) ) )  +h  ( -u 1  .h  ( 2  .h  C
) ) )
4937, 39, 483eqtr4i 2313 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( -u 1  .h  ( A  -h  B
) ) )  =  ( ( 2  .h  B )  -h  (
2  .h  C ) )
5018, 22hvsubvali 21600 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) )  =  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  +h  ( -u 1  .h  ( A  -h  B ) ) )
5116, 8, 3hvsubdistr1i 21631 . . . . . . . . . . . . . 14  |-  ( 2  .h  ( B  -h  C ) )  =  ( ( 2  .h  B )  -h  (
2  .h  C ) )
5249, 50, 513eqtr4i 2313 . . . . . . . . . . . . 13  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) )  =  ( 2  .h  ( B  -h  C ) )
5352fveq2i 5528 . . . . . . . . . . . 12  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  -h  ( A  -h  B ) ) )  =  ( normh `  ( 2  .h  ( B  -h  C ) ) )
5416, 9norm-iii-i 21718 . . . . . . . . . . . 12  |-  ( normh `  ( 2  .h  ( B  -h  C ) ) )  =  ( ( abs `  2 )  x.  ( normh `  ( B  -h  C ) ) )
55 0re 8838 . . . . . . . . . . . . . . 15  |-  0  e.  RR
56 2pos 9828 . . . . . . . . . . . . . . 15  |-  0  <  2
5755, 1, 56ltleii 8941 . . . . . . . . . . . . . 14  |-  0  <_  2
581absidi 11861 . . . . . . . . . . . . . 14  |-  ( 0  <_  2  ->  ( abs `  2 )  =  2 )
5957, 58ax-mp 8 . . . . . . . . . . . . 13  |-  ( abs `  2 )  =  2
6059oveq1i 5868 . . . . . . . . . . . 12  |-  ( ( abs `  2 )  x.  ( normh `  ( B  -h  C ) ) )  =  ( 2  x.  ( normh `  ( B  -h  C ) ) )
6153, 54, 603eqtri 2307 . . . . . . . . . . 11  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  -h  ( A  -h  B ) ) )  =  ( 2  x.  ( normh `  ( B  -h  C ) ) )
6261oveq1i 5868 . . . . . . . . . 10  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  -h  ( A  -h  B
) ) ) ^
2 )  =  ( ( 2  x.  ( normh `  ( B  -h  C ) ) ) ^ 2 )
6310recni 8849 . . . . . . . . . . 11  |-  ( normh `  ( B  -h  C
) )  e.  CC
6416, 63sqmuli 11187 . . . . . . . . . 10  |-  ( ( 2  x.  ( normh `  ( B  -h  C
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
65 sq2 11199 . . . . . . . . . . 11  |-  ( 2 ^ 2 )  =  4
6665oveq1i 5868 . . . . . . . . . 10  |-  ( ( 2 ^ 2 )  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  =  ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
6762, 64, 663eqtri 2307 . . . . . . . . 9  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  -h  ( A  -h  B
) ) ) ^
2 )  =  ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
682, 8hvsubcan2i 21643 . . . . . . . . . . . . . . . 16  |-  ( ( A  +h  B )  +h  ( A  -h  B ) )  =  ( 2  .h  A
)
6968oveq1i 5868 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  +h  ( A  -h  B ) )  +h  ( -u 1  .h  ( 2  .h  C
) ) )  =  ( ( 2  .h  A )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
7015, 35, 22hvadd32i 21633 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( 2  .h  C ) ) )  +h  ( A  -h  B ) )  =  ( ( ( A  +h  B )  +h  ( A  -h  B ) )  +h  ( -u 1  .h  ( 2  .h  C
) ) )
7116, 2hvmulcli 21594 . . . . . . . . . . . . . . . 16  |-  ( 2  .h  A )  e. 
~H
7271, 17hvsubvali 21600 . . . . . . . . . . . . . . 15  |-  ( ( 2  .h  A )  -h  ( 2  .h  C ) )  =  ( ( 2  .h  A )  +h  ( -u 1  .h  ( 2  .h  C ) ) )
7369, 70, 723eqtr4i 2313 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  +h  ( -u
1  .h  ( 2  .h  C ) ) )  +h  ( A  -h  B ) )  =  ( ( 2  .h  A )  -h  ( 2  .h  C
) )
7438oveq1i 5868 . . . . . . . . . . . . . 14  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( A  -h  B ) )  =  ( ( ( A  +h  B )  +h  ( -u 1  .h  ( 2  .h  C
) ) )  +h  ( A  -h  B
) )
7516, 2, 3hvsubdistr1i 21631 . . . . . . . . . . . . . 14  |-  ( 2  .h  ( A  -h  C ) )  =  ( ( 2  .h  A )  -h  (
2  .h  C ) )
7673, 74, 753eqtr4i 2313 . . . . . . . . . . . . 13  |-  ( ( ( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( A  -h  B ) )  =  ( 2  .h  ( A  -h  C ) )
7776fveq2i 5528 . . . . . . . . . . . 12  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  +h  ( A  -h  B ) ) )  =  ( normh `  ( 2  .h  ( A  -h  C ) ) )
7816, 4norm-iii-i 21718 . . . . . . . . . . . 12  |-  ( normh `  ( 2  .h  ( A  -h  C ) ) )  =  ( ( abs `  2 )  x.  ( normh `  ( A  -h  C ) ) )
7959oveq1i 5868 . . . . . . . . . . . 12  |-  ( ( abs `  2 )  x.  ( normh `  ( A  -h  C ) ) )  =  ( 2  x.  ( normh `  ( A  -h  C ) ) )
8077, 78, 793eqtri 2307 . . . . . . . . . . 11  |-  ( normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C
) )  +h  ( A  -h  B ) ) )  =  ( 2  x.  ( normh `  ( A  -h  C ) ) )
8180oveq1i 5868 . . . . . . . . . 10  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  +h  ( A  -h  B
) ) ) ^
2 )  =  ( ( 2  x.  ( normh `  ( A  -h  C ) ) ) ^ 2 )
825recni 8849 . . . . . . . . . . 11  |-  ( normh `  ( A  -h  C
) )  e.  CC
8316, 82sqmuli 11187 . . . . . . . . . 10  |-  ( ( 2  x.  ( normh `  ( A  -h  C
) ) ) ^
2 )  =  ( ( 2 ^ 2 )  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
8465oveq1i 5868 . . . . . . . . . 10  |-  ( ( 2 ^ 2 )  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  =  ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
8581, 83, 843eqtri 2307 . . . . . . . . 9  |-  ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  +h  ( A  -h  B
) ) ) ^
2 )  =  ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
8667, 85oveq12i 5870 . . . . . . . 8  |-  ( ( ( normh `  ( (
( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) ) ) ^ 2 )  +  ( ( normh `  (
( ( A  +h  B )  -h  (
2  .h  C ) )  +h  ( A  -h  B ) ) ) ^ 2 ) )  =  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) ) )
8733, 86eqtr4i 2306 . . . . . . 7  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  =  ( ( (
normh `  ( ( ( A  +h  B )  -h  ( 2  .h  C ) )  -h  ( A  -h  B
) ) ) ^
2 )  +  ( ( normh `  ( (
( A  +h  B
)  -h  ( 2  .h  C ) )  +h  ( A  -h  B ) ) ) ^ 2 ) )
8818, 22normpari 21733 . . . . . . 7  |-  ( ( ( normh `  ( (
( A  +h  B
)  -h  ( 2  .h  C ) )  -h  ( A  -h  B ) ) ) ^ 2 )  +  ( ( normh `  (
( ( A  +h  B )  -h  (
2  .h  C ) )  +h  ( A  -h  B ) ) ) ^ 2 ) )  =  ( ( 2  x.  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )
8987, 88eqtri 2303 . . . . . 6  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  =  ( ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  +  ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) ) )
9089oveq1i 5868 . . . . 5  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  /  2 )  =  ( ( ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  +  ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) ) )  /  2 )
9116, 21mulcli 8842 . . . . . 6  |-  ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  e.  CC
9216, 25mulcli 8842 . . . . . 6  |-  ( 2  x.  ( ( normh `  ( A  -h  B
) ) ^ 2 ) )  e.  CC
9391, 92, 16, 31divdiri 9517 . . . . 5  |-  ( ( ( 2  x.  (
( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( A  -h  B ) ) ^
2 ) ) )  /  2 )  =  ( ( ( 2  x.  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  /  2
)  +  ( ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) )  / 
2 ) )
9421, 16, 31divcan3i 9506 . . . . . 6  |-  ( ( 2  x.  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  / 
2 )  =  ( ( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )
9525, 16, 31divcan3i 9506 . . . . . 6  |-  ( ( 2  x.  ( (
normh `  ( A  -h  B ) ) ^
2 ) )  / 
2 )  =  ( ( normh `  ( A  -h  B ) ) ^
2 )
9694, 95oveq12i 5870 . . . . 5  |-  ( ( ( 2  x.  (
( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )  / 
2 )  +  ( ( 2  x.  (
( normh `  ( A  -h  B ) ) ^
2 ) )  / 
2 ) )  =  ( ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 )  +  ( (
normh `  ( A  -h  B ) ) ^
2 ) )
9790, 93, 963eqtri 2307 . . . 4  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  /  2 )  =  ( ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 )  +  ( (
normh `  ( A  -h  B ) ) ^
2 ) )
9826, 27, 16, 31div23i 9518 . . . . . 6  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  / 
2 )  =  ( ( 4  /  2
)  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
99 4d2e2 9876 . . . . . . 7  |-  ( 4  /  2 )  =  2
10099oveq1i 5868 . . . . . 6  |-  ( ( 4  /  2 )  x.  ( ( normh `  ( A  -h  C
) ) ^ 2 ) )  =  ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
10198, 100eqtri 2303 . . . . 5  |-  ( ( 4  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )  / 
2 )  =  ( 2  x.  ( (
normh `  ( A  -h  C ) ) ^
2 ) )
10226, 29, 16, 31div23i 9518 . . . . . 6  |-  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 )  =  ( ( 4  /  2
)  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
10399oveq1i 5868 . . . . . 6  |-  ( ( 4  /  2 )  x.  ( ( normh `  ( B  -h  C
) ) ^ 2 ) )  =  ( 2  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
104102, 103eqtri 2303 . . . . 5  |-  ( ( 4  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 )  =  ( 2  x.  ( (
normh `  ( B  -h  C ) ) ^
2 ) )
105101, 104oveq12i 5870 . . . 4  |-  ( ( ( 4  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  / 
2 )  +  ( ( 4  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) )  / 
2 ) )  =  ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )
10632, 97, 1053eqtr3i 2311 . . 3  |-  ( ( ( normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 )  +  ( ( normh `  ( A  -h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )
10714, 21, 25, 106subaddrii 9135 . 2  |-  ( ( ( 2  x.  (
( normh `  ( A  -h  C ) ) ^
2 ) )  +  ( 2  x.  (
( normh `  ( B  -h  C ) ) ^
2 ) ) )  -  ( ( normh `  ( ( A  +h  B )  -h  (
2  .h  C ) ) ) ^ 2 ) )  =  ( ( normh `  ( A  -h  B ) ) ^
2 )
108107eqcomi 2287 1  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  =  ( ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  ( B  -h  C ) ) ^ 2 ) ) )  -  ( (
normh `  ( ( A  +h  B )  -h  ( 2  .h  C
) ) ) ^
2 ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   2c2 9795   4c4 9797   ^cexp 11104   abscabs 11719   ~Hchil 21499    +h cva 21500    .h csm 21501   normhcno 21503    -h cmv 21505
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-hnorm 21548  df-hvsub 21551
  Copyright terms: Public domain W3C validator