Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  notab Structured version   Unicode version

Theorem notab 3603
 Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab

Proof of Theorem notab
StepHypRef Expression
1 df-rab 2706 . . 3
2 rabab 2965 . . 3
31, 2eqtr3i 2457 . 2
4 difab 3602 . . 3
5 abid2 2552 . . . 4
65difeq1i 3453 . . 3
74, 6eqtr3i 2457 . 2
83, 7eqtr3i 2457 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 359   wceq 1652   wcel 1725  cab 2421  crab 2701  cvv 2948   cdif 3309 This theorem is referenced by:  dfif3  3741 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rab 2706  df-v 2950  df-dif 3315
 Copyright terms: Public domain W3C validator