Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  notatnand Structured version   Unicode version

Theorem notatnand 27840
Description: Do not use. Use intnanr instead. Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypothesis
Ref Expression
notatnand.1  |-  -.  ph
Assertion
Ref Expression
notatnand  |-  -.  ( ph  /\  ps )

Proof of Theorem notatnand
StepHypRef Expression
1 notatnand.1 . 2  |-  -.  ph
21intnanr 882 1  |-  -.  ( ph  /\  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359
This theorem is referenced by:  dandysum2p2e4  27919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator