MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notfal Structured version   Unicode version

Theorem notfal 1358
Description: A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
notfal  |-  ( -. 
F. 
<->  T.  )

Proof of Theorem notfal
StepHypRef Expression
1 fal 1331 . 2  |-  -.  F.
21bitru 1335 1  |-  ( -. 
F. 
<->  T.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    T. wtru 1325    F. wfal 1326
This theorem is referenced by:  trunanfal  1364  falnanfal  1366  truxorfal  1368  falxortru  1369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-tru 1328  df-fal 1329
  Copyright terms: Public domain W3C validator