MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nottru Unicode version

Theorem nottru 1338
Description: A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru  |-  ( -.  T.  <->  F.  )

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1311 . 2  |-  (  F.  <->  -.  T.  )
21bicomi 193 1  |-  ( -.  T.  <->  F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    T. wtru 1307    F. wfal 1308
This theorem is referenced by:  trubifal  1341  trunantru  1344  truxortru  1348  falxorfal  1351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-fal 1311
  Copyright terms: Public domain W3C validator