MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nottru Structured version   Unicode version

Theorem nottru 1357
Description: A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru  |-  ( -.  T.  <->  F.  )

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1329 . 2  |-  (  F.  <->  -.  T.  )
21bicomi 194 1  |-  ( -.  T.  <->  F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    T. wtru 1325    F. wfal 1326
This theorem is referenced by:  trubifal  1360  trunantru  1363  truxortru  1367  falxorfal  1370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-fal 1329
  Copyright terms: Public domain W3C validator