MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  npomex Structured version   Unicode version

Theorem npomex 8873
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of  P. is an infinite set, the negation of Infinity implies that  P., and hence 
RR, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 8870 and nsmallnq 8854). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
npomex  |-  ( A  e.  P.  ->  om  e.  _V )

Proof of Theorem npomex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2964 . . . 4  |-  ( A  e.  P.  ->  A  e.  _V )
2 prnmax 8872 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  E. y  e.  A  x  <Q  y )
32ralrimiva 2789 . . . . 5  |-  ( A  e.  P.  ->  A. x  e.  A  E. y  e.  A  x  <Q  y )
4 prpssnq 8867 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  A  C.  Q. )
54pssssd 3444 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A  C_ 
Q. )
6 ltsonq 8846 . . . . . . . . . 10  |-  <Q  Or  Q.
7 soss 4521 . . . . . . . . . 10  |-  ( A 
C_  Q.  ->  (  <Q  Or  Q.  ->  <Q  Or  A
) )
85, 6, 7ee10 1385 . . . . . . . . 9  |-  ( A  e.  P.  ->  <Q  Or  A )
98adantr 452 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  <Q  Or  A )
10 simpr 448 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  A  e.  Fin )
11 prn0 8866 . . . . . . . . 9  |-  ( A  e.  P.  ->  A  =/=  (/) )
1211adantr 452 . . . . . . . 8  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  A  =/=  (/) )
13 fimax2g 7353 . . . . . . . 8  |-  ( ( 
<Q  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x  <Q  y )
149, 10, 12, 13syl3anc 1184 . . . . . . 7  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  E. x  e.  A  A. y  e.  A  -.  x  <Q  y )
15 ralnex 2715 . . . . . . . . 9  |-  ( A. y  e.  A  -.  x  <Q  y  <->  -.  E. y  e.  A  x  <Q  y )
1615rexbii 2730 . . . . . . . 8  |-  ( E. x  e.  A  A. y  e.  A  -.  x  <Q  y  <->  E. x  e.  A  -.  E. y  e.  A  x  <Q  y )
17 rexnal 2716 . . . . . . . 8  |-  ( E. x  e.  A  -.  E. y  e.  A  x 
<Q  y  <->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y )
1816, 17bitri 241 . . . . . . 7  |-  ( E. x  e.  A  A. y  e.  A  -.  x  <Q  y  <->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y )
1914, 18sylib 189 . . . . . 6  |-  ( ( A  e.  P.  /\  A  e.  Fin )  ->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y
)
2019ex 424 . . . . 5  |-  ( A  e.  P.  ->  ( A  e.  Fin  ->  -.  A. x  e.  A  E. y  e.  A  x  <Q  y ) )
213, 20mt2d 111 . . . 4  |-  ( A  e.  P.  ->  -.  A  e.  Fin )
22 nelne1 2693 . . . 4  |-  ( ( A  e.  _V  /\  -.  A  e.  Fin )  ->  _V  =/=  Fin )
231, 21, 22syl2anc 643 . . 3  |-  ( A  e.  P.  ->  _V  =/=  Fin )
2423necomd 2687 . 2  |-  ( A  e.  P.  ->  Fin  =/=  _V )
25 fineqv 7324 . . 3  |-  ( -. 
om  e.  _V  <->  Fin  =  _V )
2625necon1abii 2655 . 2  |-  ( Fin 
=/=  _V  <->  om  e.  _V )
2724, 26sylib 189 1  |-  ( A  e.  P.  ->  om  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   class class class wbr 4212    Or wor 4502   omcom 4845   Fincfn 7109   Q.cnq 8727    <Q cltq 8733   P.cnp 8734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-ni 8749  df-mi 8751  df-lti 8752  df-ltpq 8787  df-enq 8788  df-nq 8789  df-ltnq 8795  df-np 8858
  Copyright terms: Public domain W3C validator