MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nprmi Unicode version

Theorem nprmi 12820
Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
nprmi.1  |-  A  e.  NN
nprmi.2  |-  B  e.  NN
nprmi.3  |-  1  <  A
nprmi.4  |-  1  <  B
nprmi.5  |-  ( A  x.  B )  =  N
Assertion
Ref Expression
nprmi  |-  -.  N  e.  Prime

Proof of Theorem nprmi
StepHypRef Expression
1 nprmi.1 . . 3  |-  A  e.  NN
2 nprmi.3 . . 3  |-  1  <  A
3 nprmi.2 . . 3  |-  B  e.  NN
4 nprmi.4 . . 3  |-  1  <  B
5 eluz2b2 10337 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  1  < 
A ) )
6 eluz2b2 10337 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  <->  ( B  e.  NN  /\  1  < 
B ) )
7 nprm 12819 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  -.  ( A  x.  B )  e.  Prime )
85, 6, 7syl2anbr 466 . . 3  |-  ( ( ( A  e.  NN  /\  1  <  A )  /\  ( B  e.  NN  /\  1  < 
B ) )  ->  -.  ( A  x.  B
)  e.  Prime )
91, 2, 3, 4, 8mp4an 654 . 2  |-  -.  ( A  x.  B )  e.  Prime
10 nprmi.5 . . 3  |-  ( A  x.  B )  =  N
1110eleq1i 2379 . 2  |-  ( ( A  x.  B )  e.  Prime  <->  N  e.  Prime )
129, 11mtbi 289 1  |-  -.  N  e.  Prime
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1633    e. wcel 1701   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   1c1 8783    x. cmul 8787    < clt 8912   NNcn 9791   2c2 9840   ZZ>=cuz 10277   Primecprime 12805
This theorem is referenced by:  dec5nprm  13128  dec2nprm  13129  4nprm  13153  6nprm  13158  8nprm  13160  9nprm  13161  10nprm  13162  prmlem2  13168
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-2o 6522  df-oadd 6525  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-n0 10013  df-z 10072  df-uz 10278  df-dvds 12579  df-prm 12806
  Copyright terms: Public domain W3C validator