MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerf Unicode version

Theorem nqerf 8554
Description: Corollary of nqereu 8553: the function  /Q is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerf  |-  /Q :
( N.  X.  N. )
--> Q.

Proof of Theorem nqerf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-erq 8537 . . . . . . 7  |-  /Q  =  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. ) )
2 inss2 3390 . . . . . . 7  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ( ( N.  X.  N. )  X. 
Q. )
31, 2eqsstri 3208 . . . . . 6  |-  /Q  C_  ( ( N.  X.  N. )  X.  Q. )
4 xpss 4793 . . . . . 6  |-  ( ( N.  X.  N. )  X.  Q. )  C_  ( _V  X.  _V )
53, 4sstri 3188 . . . . 5  |-  /Q  C_  ( _V  X.  _V )
6 df-rel 4696 . . . . 5  |-  ( Rel 
/Q 
<->  /Q  C_  ( _V  X.  _V ) )
75, 6mpbir 200 . . . 4  |-  Rel  /Q
8 nqereu 8553 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  E! y  e.  Q.  y  ~Q  x )
9 df-reu 2550 . . . . . . . . 9  |-  ( E! y  e.  Q.  y  ~Q  x  <->  E! y ( y  e.  Q.  /\  y  ~Q  x ) )
10 eumo 2183 . . . . . . . . 9  |-  ( E! y ( y  e. 
Q.  /\  y  ~Q  x )  ->  E* y ( y  e. 
Q.  /\  y  ~Q  x ) )
119, 10sylbi 187 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
128, 11syl 15 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E* y
( y  e.  Q.  /\  y  ~Q  x ) )
13 moanimv 2201 . . . . . . 7  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  <->  ( x  e.  ( N.  X.  N. )  ->  E* y ( y  e.  Q.  /\  y  ~Q  x ) ) )
1412, 13mpbir 200 . . . . . 6  |-  E* y
( x  e.  ( N.  X.  N. )  /\  ( y  e.  Q.  /\  y  ~Q  x ) )
153brel 4737 . . . . . . . . 9  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  y  e.  Q. ) )
1615simpld 445 . . . . . . . 8  |-  ( x /Q y  ->  x  e.  ( N.  X.  N. ) )
1715simprd 449 . . . . . . . 8  |-  ( x /Q y  ->  y  e.  Q. )
18 enqer 8545 . . . . . . . . . 10  |-  ~Q  Er  ( N.  X.  N. )
1918a1i 10 . . . . . . . . 9  |-  ( x /Q y  ->  ~Q  Er  ( N.  X.  N. )
)
20 inss1 3389 . . . . . . . . . . 11  |-  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)  C_  ~Q
211, 20eqsstri 3208 . . . . . . . . . 10  |-  /Q  C_  ~Q
2221ssbri 4065 . . . . . . . . 9  |-  ( x /Q y  ->  x  ~Q  y )
2319, 22ersym 6672 . . . . . . . 8  |-  ( x /Q y  ->  y  ~Q  x )
2416, 17, 23jca32 521 . . . . . . 7  |-  ( x /Q y  ->  (
x  e.  ( N. 
X.  N. )  /\  (
y  e.  Q.  /\  y  ~Q  x ) ) )
2524moimi 2190 . . . . . 6  |-  ( E* y ( x  e.  ( N.  X.  N. )  /\  ( y  e. 
Q.  /\  y  ~Q  x ) )  ->  E* y  x /Q y )
2614, 25ax-mp 8 . . . . 5  |-  E* y  x /Q y
2726ax-gen 1533 . . . 4  |-  A. x E* y  x /Q y
28 dffun6 5270 . . . 4  |-  ( Fun 
/Q 
<->  ( Rel  /Q  /\  A. x E* y  x /Q y ) )
297, 27, 28mpbir2an 886 . . 3  |-  Fun  /Q
30 dmss 4878 . . . . . 6  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  dom  /Q  C_  dom  ( ( N.  X.  N. )  X.  Q. )
)
313, 30ax-mp 8 . . . . 5  |-  dom  /Q  C_ 
dom  ( ( N. 
X.  N. )  X.  Q. )
32 1nq 8552 . . . . . 6  |-  1Q  e.  Q.
33 ne0i 3461 . . . . . 6  |-  ( 1Q  e.  Q.  ->  Q.  =/=  (/) )
34 dmxp 4897 . . . . . 6  |-  ( Q.  =/=  (/)  ->  dom  ( ( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
)
3532, 33, 34mp2b 9 . . . . 5  |-  dom  (
( N.  X.  N. )  X.  Q. )  =  ( N.  X.  N. )
3631, 35sseqtri 3210 . . . 4  |-  dom  /Q  C_  ( N.  X.  N. )
37 reurex 2754 . . . . . . . 8  |-  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  y  ~Q  x
)
38 simpll 730 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  e.  ( N.  X.  N. )
)
39 simplr 731 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  e.  Q. )
4018a1i 10 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  ~Q  Er  ( N.  X.  N. ) )
41 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  y  ~Q  x )
4240, 41ersym 6672 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x  ~Q  y )
431breqi 4029 . . . . . . . . . . . 12  |-  ( x /Q y  <->  x (  ~Q  i^i  ( ( N. 
X.  N. )  X.  Q. ) ) y )
44 brinxp2 4751 . . . . . . . . . . . 12  |-  ( x (  ~Q  i^i  (
( N.  X.  N. )  X.  Q. ) ) y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4543, 44bitri 240 . . . . . . . . . . 11  |-  ( x /Q y  <->  ( x  e.  ( N.  X.  N. )  /\  y  e.  Q.  /\  x  ~Q  y ) )
4638, 39, 42, 45syl3anbrc 1136 . . . . . . . . . 10  |-  ( ( ( x  e.  ( N.  X.  N. )  /\  y  e.  Q. )  /\  y  ~Q  x
)  ->  x /Q y )
4746ex 423 . . . . . . . . 9  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  Q. )  ->  (
y  ~Q  x  ->  x /Q y ) )
4847reximdva 2655 . . . . . . . 8  |-  ( x  e.  ( N.  X.  N. )  ->  ( E. y  e.  Q.  y  ~Q  x  ->  E. y  e.  Q.  x /Q y
) )
49 rexex 2602 . . . . . . . 8  |-  ( E. y  e.  Q.  x /Q y  ->  E. y  x /Q y )
5037, 48, 49syl56 30 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  ( E! y  e.  Q.  y  ~Q  x  ->  E. y  x /Q y ) )
518, 50mpd 14 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  E. y  x /Q y )
52 vex 2791 . . . . . . 7  |-  x  e. 
_V
5352eldm 4876 . . . . . 6  |-  ( x  e.  dom  /Q  <->  E. y  x /Q y )
5451, 53sylibr 203 . . . . 5  |-  ( x  e.  ( N.  X.  N. )  ->  x  e. 
dom  /Q )
5554ssriv 3184 . . . 4  |-  ( N. 
X.  N. )  C_  dom  /Q
5636, 55eqssi 3195 . . 3  |-  dom  /Q  =  ( N.  X.  N. )
57 df-fn 5258 . . 3  |-  ( /Q  Fn  ( N.  X.  N. )  <->  ( Fun  /Q  /\ 
dom  /Q  =  ( N.  X.  N. ) ) )
5829, 56, 57mpbir2an 886 . 2  |-  /Q  Fn  ( N.  X.  N. )
59 rnss 4907 . . . 4  |-  ( /Q  C_  ( ( N.  X.  N. )  X.  Q. )  ->  ran  /Q  C_  ran  ( ( N.  X.  N. )  X.  Q. )
)
603, 59ax-mp 8 . . 3  |-  ran  /Q  C_ 
ran  ( ( N. 
X.  N. )  X.  Q. )
61 rnxpss 5108 . . 3  |-  ran  (
( N.  X.  N. )  X.  Q. )  C_  Q.
6260, 61sstri 3188 . 2  |-  ran  /Q  C_ 
Q.
63 df-f 5259 . 2  |-  ( /Q : ( N.  X.  N. ) --> Q.  <->  ( /Q  Fn  ( N.  X.  N. )  /\  ran  /Q  C_  Q. ) )
6458, 62, 63mpbir2an 886 1  |-  /Q :
( N.  X.  N. )
--> Q.
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   E!weu 2143   E*wmo 2144    =/= wne 2446   E.wrex 2544   E!wreu 2545   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023    X. cxp 4687   dom cdm 4689   ran crn 4690   Rel wrel 4694   Fun wfun 5249    Fn wfn 5250   -->wf 5251    Er wer 6657   N.cnpi 8466    ~Q ceq 8473   Q.cnq 8474   1Qc1q 8475   /Qcerq 8476
This theorem is referenced by:  nqercl  8555  nqerrel  8556  nqerid  8557  addnqf  8572  mulnqf  8573  adderpq  8580  mulerpq  8581  lterpq  8594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-mi 8498  df-lti 8499  df-enq 8535  df-nq 8536  df-erq 8537  df-1nq 8540
  Copyright terms: Public domain W3C validator