MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmhmph Structured version   Unicode version

Theorem nrmhmph 17827
Description: Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmhmph  |-  ( J  ~=  K  ->  ( J  e.  Nrm  ->  K  e.  Nrm ) )

Proof of Theorem nrmhmph
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 17809 . 2  |-  ( J  ~=  K  <->  ( J  Homeo  K )  =/=  (/) )
2 n0 3638 . . 3  |-  ( ( J  Homeo  K )  =/=  (/)  <->  E. f  f  e.  ( J  Homeo  K ) )
3 hmeocn 17793 . . . . . . . 8  |-  ( f  e.  ( J  Homeo  K )  ->  f  e.  ( J  Cn  K
) )
43adantl 454 . . . . . . 7  |-  ( ( J  e.  Nrm  /\  f  e.  ( J  Homeo  K ) )  -> 
f  e.  ( J  Cn  K ) )
5 cntop2 17306 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  K  e.  Top )
64, 5syl 16 . . . . . 6  |-  ( ( J  e.  Nrm  /\  f  e.  ( J  Homeo  K ) )  ->  K  e.  Top )
7 simpll 732 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  J  e.  Nrm )
84adantr 453 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  f  e.  ( J  Cn  K
) )
9 simprl 734 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  x  e.  K )
10 cnima 17330 . . . . . . . . . 10  |-  ( ( f  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' f "
x )  e.  J
)
118, 9, 10syl2anc 644 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  ( `' f " x )  e.  J )
12 inss1 3562 . . . . . . . . . . 11  |-  ( (
Clsd `  K )  i^i  ~P x )  C_  ( Clsd `  K )
13 simprr 735 . . . . . . . . . . 11  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) )
1412, 13sseldi 3347 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  e.  ( Clsd `  K )
)
15 cnclima 17333 . . . . . . . . . 10  |-  ( ( f  e.  ( J  Cn  K )  /\  y  e.  ( Clsd `  K ) )  -> 
( `' f "
y )  e.  (
Clsd `  J )
)
168, 14, 15syl2anc 644 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  ( `' f " y )  e.  ( Clsd `  J
) )
17 inss2 3563 . . . . . . . . . . . 12  |-  ( (
Clsd `  K )  i^i  ~P x )  C_  ~P x
1817, 13sseldi 3347 . . . . . . . . . . 11  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  e.  ~P x )
1918elpwid 3809 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  C_  x )
20 imass2 5241 . . . . . . . . . 10  |-  ( y 
C_  x  ->  ( `' f " y
)  C_  ( `' f " x ) )
2119, 20syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  ( `' f " y )  C_  ( `' f " x
) )
22 nrmsep3 17420 . . . . . . . . 9  |-  ( ( J  e.  Nrm  /\  ( ( `' f
" x )  e.  J  /\  ( `' f " y )  e.  ( Clsd `  J
)  /\  ( `' f " y )  C_  ( `' f " x
) ) )  ->  E. w  e.  J  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) )
237, 11, 16, 21, 22syl13anc 1187 . . . . . . . 8  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  E. w  e.  J  ( ( `' f " y
)  C_  w  /\  ( ( cls `  J
) `  w )  C_  ( `' f "
x ) ) )
24 simpllr 737 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  f  e.  ( J  Homeo  K ) )
25 simprl 734 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  w  e.  J )
26 hmeoima 17798 . . . . . . . . . 10  |-  ( ( f  e.  ( J 
Homeo  K )  /\  w  e.  J )  ->  (
f " w )  e.  K )
2724, 25, 26syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
f " w )  e.  K )
28 simprrl 742 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  ( `' f " y
)  C_  w )
29 eqid 2437 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
30 eqid 2437 . . . . . . . . . . . . . 14  |-  U. K  =  U. K
3129, 30hmeof1o 17797 . . . . . . . . . . . . 13  |-  ( f  e.  ( J  Homeo  K )  ->  f : U. J -1-1-onto-> U. K )
3224, 31syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  f : U. J -1-1-onto-> U. K )
33 f1ofun 5677 . . . . . . . . . . . 12  |-  ( f : U. J -1-1-onto-> U. K  ->  Fun  f )
3432, 33syl 16 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  Fun  f )
3514adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  e.  ( Clsd `  K
) )
3630cldss 17094 . . . . . . . . . . . . 13  |-  ( y  e.  ( Clsd `  K
)  ->  y  C_  U. K )
3735, 36syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  C_ 
U. K )
38 f1ofo 5682 . . . . . . . . . . . . 13  |-  ( f : U. J -1-1-onto-> U. K  ->  f : U. J -onto-> U. K )
39 forn 5657 . . . . . . . . . . . . 13  |-  ( f : U. J -onto-> U. K  ->  ran  f  =  U. K )
4032, 38, 393syl 19 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  ran  f  =  U. K )
4137, 40sseqtr4d 3386 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  C_ 
ran  f )
42 funimass1 5527 . . . . . . . . . . 11  |-  ( ( Fun  f  /\  y  C_ 
ran  f )  -> 
( ( `' f
" y )  C_  w  ->  y  C_  (
f " w ) ) )
4334, 41, 42syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( `' f "
y )  C_  w  ->  y  C_  ( f " w ) ) )
4428, 43mpd 15 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  C_  ( f " w
) )
45 elssuni 4044 . . . . . . . . . . . 12  |-  ( w  e.  J  ->  w  C_ 
U. J )
4645ad2antrl 710 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  w  C_ 
U. J )
4729hmeocls 17801 . . . . . . . . . . 11  |-  ( ( f  e.  ( J 
Homeo  K )  /\  w  C_ 
U. J )  -> 
( ( cls `  K
) `  ( f " w ) )  =  ( f "
( ( cls `  J
) `  w )
) )
4824, 46, 47syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  K
) `  ( f " w ) )  =  ( f "
( ( cls `  J
) `  w )
) )
49 simprrr 743 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  J
) `  w )  C_  ( `' f "
x ) )
50 nrmtop 17401 . . . . . . . . . . . . . . 15  |-  ( J  e.  Nrm  ->  J  e.  Top )
5150ad3antrrr 712 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  J  e.  Top )
5229clsss3 17124 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  w  C_  U. J )  ->  ( ( cls `  J ) `  w
)  C_  U. J )
5351, 46, 52syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  J
) `  w )  C_ 
U. J )
54 f1odm 5679 . . . . . . . . . . . . . 14  |-  ( f : U. J -1-1-onto-> U. K  ->  dom  f  =  U. J )
5532, 54syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  dom  f  =  U. J )
5653, 55sseqtr4d 3386 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  J
) `  w )  C_ 
dom  f )
57 funimass3 5847 . . . . . . . . . . . 12  |-  ( ( Fun  f  /\  (
( cls `  J
) `  w )  C_ 
dom  f )  -> 
( ( f "
( ( cls `  J
) `  w )
)  C_  x  <->  ( ( cls `  J ) `  w )  C_  ( `' f " x
) ) )
5834, 56, 57syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( f " (
( cls `  J
) `  w )
)  C_  x  <->  ( ( cls `  J ) `  w )  C_  ( `' f " x
) ) )
5949, 58mpbird 225 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
f " ( ( cls `  J ) `
 w ) ) 
C_  x )
6048, 59eqsstrd 3383 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  K
) `  ( f " w ) ) 
C_  x )
61 sseq2 3371 . . . . . . . . . . 11  |-  ( z  =  ( f "
w )  ->  (
y  C_  z  <->  y  C_  ( f " w
) ) )
62 fveq2 5729 . . . . . . . . . . . 12  |-  ( z  =  ( f "
w )  ->  (
( cls `  K
) `  z )  =  ( ( cls `  K ) `  (
f " w ) ) )
6362sseq1d 3376 . . . . . . . . . . 11  |-  ( z  =  ( f "
w )  ->  (
( ( cls `  K
) `  z )  C_  x  <->  ( ( cls `  K ) `  (
f " w ) )  C_  x )
)
6461, 63anbi12d 693 . . . . . . . . . 10  |-  ( z  =  ( f "
w )  ->  (
( y  C_  z  /\  ( ( cls `  K
) `  z )  C_  x )  <->  ( y  C_  ( f " w
)  /\  ( ( cls `  K ) `  ( f " w
) )  C_  x
) ) )
6564rspcev 3053 . . . . . . . . 9  |-  ( ( ( f " w
)  e.  K  /\  ( y  C_  (
f " w )  /\  ( ( cls `  K ) `  (
f " w ) )  C_  x )
)  ->  E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `
 z )  C_  x ) )
6627, 44, 60, 65syl12anc 1183 . . . . . . . 8  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J  Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `
 z )  C_  x ) )
6723, 66rexlimddv 2835 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J 
Homeo  K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `
 z )  C_  x ) )
6867ralrimivva 2799 . . . . . 6  |-  ( ( J  e.  Nrm  /\  f  e.  ( J  Homeo  K ) )  ->  A. x  e.  K  A. y  e.  (
( Clsd `  K )  i^i  ~P x ) E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K
) `  z )  C_  x ) )
69 isnrm 17400 . . . . . 6  |-  ( K  e.  Nrm  <->  ( K  e.  Top  /\  A. x  e.  K  A. y  e.  ( ( Clsd `  K
)  i^i  ~P x
) E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `  z
)  C_  x )
) )
706, 68, 69sylanbrc 647 . . . . 5  |-  ( ( J  e.  Nrm  /\  f  e.  ( J  Homeo  K ) )  ->  K  e.  Nrm )
7170expcom 426 . . . 4  |-  ( f  e.  ( J  Homeo  K )  ->  ( J  e.  Nrm  ->  K  e.  Nrm ) )
7271exlimiv 1645 . . 3  |-  ( E. f  f  e.  ( J  Homeo  K )  ->  ( J  e.  Nrm  ->  K  e.  Nrm )
)
732, 72sylbi 189 . 2  |-  ( ( J  Homeo  K )  =/=  (/)  ->  ( J  e.  Nrm  ->  K  e.  Nrm ) )
741, 73sylbi 189 1  |-  ( J  ~=  K  ->  ( J  e.  Nrm  ->  K  e.  Nrm ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2600   A.wral 2706   E.wrex 2707    i^i cin 3320    C_ wss 3321   (/)c0 3629   ~Pcpw 3800   U.cuni 4016   class class class wbr 4213   `'ccnv 4878   dom cdm 4879   ran crn 4880   "cima 4882   Fun wfun 5449   -onto->wfo 5453   -1-1-onto->wf1o 5454   ` cfv 5455  (class class class)co 6082   Topctop 16959   Clsdccld 17081   clsccl 17083    Cn ccn 17289   Nrmcnrm 17375    Homeo chmeo 17786    ~= chmph 17787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-suc 4588  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-1o 6725  df-map 7021  df-top 16964  df-topon 16967  df-cld 17084  df-cls 17086  df-cn 17292  df-nrm 17382  df-hmeo 17788  df-hmph 17789
  Copyright terms: Public domain W3C validator