MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmr0reg Unicode version

Theorem nrmr0reg 17440
Description: A normal R0 space is also regular. These spaces are usually referred to as normal regular spaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmr0reg  |-  ( ( J  e.  Nrm  /\  (KQ `  J )  e. 
Fre )  ->  J  e.  Reg )

Proof of Theorem nrmr0reg
Dummy variables  x  y  a  b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrmtop 17064 . . 3  |-  ( J  e.  Nrm  ->  J  e.  Top )
21adantr 451 . 2  |-  ( ( J  e.  Nrm  /\  (KQ `  J )  e. 
Fre )  ->  J  e.  Top )
3 simpll 730 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Nrm )
4 simprl 732 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  x  e.  J )
52adantr 451 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  Top )
6 eqid 2283 . . . . . . . 8  |-  U. J  =  U. J
76toptopon 16671 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
85, 7sylib 188 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  J  e.  (TopOn `  U. J ) )
9 simplr 731 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  (KQ `  J )  e.  Fre )
10 simprr 733 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  y  e.  x )
11 elunii 3832 . . . . . . 7  |-  ( ( y  e.  x  /\  x  e.  J )  ->  y  e.  U. J
)
1210, 4, 11syl2anc 642 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  y  e.  U. J )
13 eqid 2283 . . . . . . 7  |-  ( z  e.  U. J  |->  { w  e.  J  | 
z  e.  w }
)  =  ( z  e.  U. J  |->  { w  e.  J  | 
z  e.  w }
)
1413r0cld 17429 . . . . . 6  |-  ( ( J  e.  (TopOn `  U. J )  /\  (KQ `  J )  e.  Fre  /\  y  e.  U. J
)  ->  { a  e.  U. J  |  A. b  e.  J  (
a  e.  b  <->  y  e.  b ) }  e.  ( Clsd `  J )
)
158, 9, 12, 14syl3anc 1182 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <-> 
y  e.  b ) }  e.  ( Clsd `  J ) )
16 simp1rr 1021 . . . . . . 7  |-  ( ( ( ( J  e. 
Nrm  /\  (KQ `  J
)  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  /\  a  e.  U. J  /\  A. b  e.  J  (
a  e.  b  <->  y  e.  b ) )  -> 
y  e.  x )
174adantr 451 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Nrm  /\  (KQ `  J
)  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  /\  a  e.  U. J )  ->  x  e.  J )
18 elequ2 1689 . . . . . . . . . . 11  |-  ( b  =  x  ->  (
a  e.  b  <->  a  e.  x ) )
19 elequ2 1689 . . . . . . . . . . 11  |-  ( b  =  x  ->  (
y  e.  b  <->  y  e.  x ) )
2018, 19bibi12d 312 . . . . . . . . . 10  |-  ( b  =  x  ->  (
( a  e.  b  <-> 
y  e.  b )  <-> 
( a  e.  x  <->  y  e.  x ) ) )
2120rspcv 2880 . . . . . . . . 9  |-  ( x  e.  J  ->  ( A. b  e.  J  ( a  e.  b  <-> 
y  e.  b )  ->  ( a  e.  x  <->  y  e.  x
) ) )
2217, 21syl 15 . . . . . . . 8  |-  ( ( ( ( J  e. 
Nrm  /\  (KQ `  J
)  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  /\  a  e.  U. J )  -> 
( A. b  e.  J  ( a  e.  b  <->  y  e.  b )  ->  ( a  e.  x  <->  y  e.  x
) ) )
23223impia 1148 . . . . . . 7  |-  ( ( ( ( J  e. 
Nrm  /\  (KQ `  J
)  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  /\  a  e.  U. J  /\  A. b  e.  J  (
a  e.  b  <->  y  e.  b ) )  -> 
( a  e.  x  <->  y  e.  x ) )
2416, 23mpbird 223 . . . . . 6  |-  ( ( ( ( J  e. 
Nrm  /\  (KQ `  J
)  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  /\  a  e.  U. J  /\  A. b  e.  J  (
a  e.  b  <->  y  e.  b ) )  -> 
a  e.  x )
2524rabssdv 3253 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <-> 
y  e.  b ) }  C_  x )
26 nrmsep3 17083 . . . . 5  |-  ( ( J  e.  Nrm  /\  ( x  e.  J  /\  { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <->  y  e.  b ) }  e.  (
Clsd `  J )  /\  { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <->  y  e.  b ) }  C_  x
) )  ->  E. z  e.  J  ( {
a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <-> 
y  e.  b ) }  C_  z  /\  ( ( cls `  J
) `  z )  C_  x ) )
273, 4, 15, 25, 26syl13anc 1184 . . . 4  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. z  e.  J  ( {
a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <-> 
y  e.  b ) }  C_  z  /\  ( ( cls `  J
) `  z )  C_  x ) )
28 biidd 228 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  (
y  e.  b  <->  y  e.  b ) )
2928ralrimivw 2627 . . . . . . . 8  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  A. b  e.  J  ( y  e.  b  <->  y  e.  b ) )
30 elequ1 1687 . . . . . . . . . . 11  |-  ( a  =  y  ->  (
a  e.  b  <->  y  e.  b ) )
3130bibi1d 310 . . . . . . . . . 10  |-  ( a  =  y  ->  (
( a  e.  b  <-> 
y  e.  b )  <-> 
( y  e.  b  <-> 
y  e.  b ) ) )
3231ralbidv 2563 . . . . . . . . 9  |-  ( a  =  y  ->  ( A. b  e.  J  ( a  e.  b  <-> 
y  e.  b )  <->  A. b  e.  J  ( y  e.  b  <-> 
y  e.  b ) ) )
3332elrab 2923 . . . . . . . 8  |-  ( y  e.  { a  e. 
U. J  |  A. b  e.  J  (
a  e.  b  <->  y  e.  b ) }  <->  ( y  e.  U. J  /\  A. b  e.  J  (
y  e.  b  <->  y  e.  b ) ) )
3412, 29, 33sylanbrc 645 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  y  e.  { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <->  y  e.  b ) } )
35 ssel 3174 . . . . . . 7  |-  ( { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <-> 
y  e.  b ) }  C_  z  ->  ( y  e.  { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <-> 
y  e.  b ) }  ->  y  e.  z ) )
3634, 35syl5com 26 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <->  y  e.  b ) }  C_  z  ->  y  e.  z ) )
3736anim1d 547 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  (
( { a  e. 
U. J  |  A. b  e.  J  (
a  e.  b  <->  y  e.  b ) }  C_  z  /\  ( ( cls `  J ) `  z
)  C_  x )  ->  ( y  e.  z  /\  ( ( cls `  J ) `  z
)  C_  x )
) )
3837reximdv 2654 . . . 4  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  ( E. z  e.  J  ( { a  e.  U. J  |  A. b  e.  J  ( a  e.  b  <->  y  e.  b ) }  C_  z  /\  ( ( cls `  J
) `  z )  C_  x )  ->  E. z  e.  J  ( y  e.  z  /\  (
( cls `  J
) `  z )  C_  x ) ) )
3927, 38mpd 14 . . 3  |-  ( ( ( J  e.  Nrm  /\  (KQ `  J )  e.  Fre )  /\  ( x  e.  J  /\  y  e.  x
) )  ->  E. z  e.  J  ( y  e.  z  /\  (
( cls `  J
) `  z )  C_  x ) )
4039ralrimivva 2635 . 2  |-  ( ( J  e.  Nrm  /\  (KQ `  J )  e. 
Fre )  ->  A. x  e.  J  A. y  e.  x  E. z  e.  J  ( y  e.  z  /\  (
( cls `  J
) `  z )  C_  x ) )
41 isreg 17060 . 2  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. x  e.  J  A. y  e.  x  E. z  e.  J  ( y  e.  z  /\  (
( cls `  J
) `  z )  C_  x ) ) )
422, 40, 41sylanbrc 645 1  |-  ( ( J  e.  Nrm  /\  (KQ `  J )  e. 
Fre )  ->  J  e.  Reg )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   U.cuni 3827    e. cmpt 4077   ` cfv 5255   Topctop 16631  TopOnctopon 16632   Clsdccld 16753   clsccl 16755   Frect1 17035   Regcreg 17037   Nrmcnrm 17038  KQckq 17384
This theorem is referenced by:  nrmreg  17515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-qtop 13410  df-top 16636  df-topon 16639  df-cld 16756  df-cn 16957  df-t1 17042  df-reg 17044  df-nrm 17045  df-kq 17385
  Copyright terms: Public domain W3C validator