MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep Unicode version

Theorem nrmsep 17185
Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmsep  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) )
Distinct variable groups:    x, y, C    x, D, y    x, J, y

Proof of Theorem nrmsep
StepHypRef Expression
1 nrmsep2 17184 . 2  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  ( C  C_  x  /\  ( ( ( cls `  J
) `  x )  i^i  D )  =  (/) ) )
2 nrmtop 17164 . . . . . . . 8  |-  ( J  e.  Nrm  ->  J  e.  Top )
32ad2antrr 706 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  J  e.  Top )
4 elssuni 3934 . . . . . . . 8  |-  ( x  e.  J  ->  x  C_ 
U. J )
54ad2antrl 708 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  x  C_  U. J
)
6 eqid 2358 . . . . . . . 8  |-  U. J  =  U. J
76clscld 16884 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( ( cls `  J ) `  x
)  e.  ( Clsd `  J ) )
83, 5, 7syl2anc 642 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( ( cls `  J ) `  x
)  e.  ( Clsd `  J ) )
96cldopn 16868 . . . . . 6  |-  ( ( ( cls `  J
) `  x )  e.  ( Clsd `  J
)  ->  ( U. J  \  ( ( cls `  J ) `  x
) )  e.  J
)
108, 9syl 15 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( U. J  \  ( ( cls `  J
) `  x )
)  e.  J )
11 simprrl 740 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  C  C_  x
)
12 incom 3437 . . . . . . 7  |-  ( D  i^i  ( ( cls `  J ) `  x
) )  =  ( ( ( cls `  J
) `  x )  i^i  D )
13 simprrr 741 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( ( ( cls `  J ) `
 x )  i^i 
D )  =  (/) )
1412, 13syl5eq 2402 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( D  i^i  ( ( cls `  J
) `  x )
)  =  (/) )
15 simplr2 998 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  D  e.  (
Clsd `  J )
)
166cldss 16866 . . . . . . 7  |-  ( D  e.  ( Clsd `  J
)  ->  D  C_  U. J
)
17 reldisj 3574 . . . . . . 7  |-  ( D 
C_  U. J  ->  (
( D  i^i  (
( cls `  J
) `  x )
)  =  (/)  <->  D  C_  ( U. J  \  (
( cls `  J
) `  x )
) ) )
1815, 16, 173syl 18 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( ( D  i^i  ( ( cls `  J ) `  x
) )  =  (/)  <->  D  C_  ( U. J  \ 
( ( cls `  J
) `  x )
) ) )
1914, 18mpbid 201 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  D  C_  ( U. J  \  (
( cls `  J
) `  x )
) )
206sscls 16893 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  x  C_  (
( cls `  J
) `  x )
)
213, 5, 20syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  x  C_  (
( cls `  J
) `  x )
)
22 ssrin 3470 . . . . . . 7  |-  ( x 
C_  ( ( cls `  J ) `  x
)  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  C_  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) ) )
2321, 22syl 15 . . . . . 6  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  C_  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) ) )
24 disjdif 3602 . . . . . 6  |-  ( ( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/)
25 sseq0 3562 . . . . . 6  |-  ( ( ( x  i^i  ( U. J  \  (
( cls `  J
) `  x )
) )  C_  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  /\  (
( ( cls `  J
) `  x )  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) )  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) )
2623, 24, 25sylancl 643 . . . . 5  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) )
27 sseq2 3276 . . . . . . 7  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( D  C_  y  <->  D  C_  ( U. J  \  ( ( cls `  J ) `  x
) ) ) )
28 ineq2 3440 . . . . . . . 8  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( x  i^i  y )  =  ( x  i^i  ( U. J  \  ( ( cls `  J ) `  x
) ) ) )
2928eqeq1d 2366 . . . . . . 7  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( (
x  i^i  y )  =  (/)  <->  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) ) )
3027, 293anbi23d 1255 . . . . . 6  |-  ( y  =  ( U. J  \  ( ( cls `  J
) `  x )
)  ->  ( ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) )  <->  ( C  C_  x  /\  D  C_  ( U. J  \  (
( cls `  J
) `  x )
)  /\  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) ) ) )
3130rspcev 2960 . . . . 5  |-  ( ( ( U. J  \ 
( ( cls `  J
) `  x )
)  e.  J  /\  ( C  C_  x  /\  D  C_  ( U. J  \  ( ( cls `  J
) `  x )
)  /\  ( x  i^i  ( U. J  \ 
( ( cls `  J
) `  x )
) )  =  (/) ) )  ->  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) )
3210, 11, 19, 26, 31syl13anc 1184 . . . 4  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  ( x  e.  J  /\  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) ) )  ->  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  (
x  i^i  y )  =  (/) ) )
3332expr 598 . . 3  |-  ( ( ( J  e.  Nrm  /\  ( C  e.  (
Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  /\  x  e.  J )  ->  ( ( C  C_  x  /\  ( ( ( cls `  J ) `
 x )  i^i 
D )  =  (/) )  ->  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  (
x  i^i  y )  =  (/) ) ) )
3433reximdva 2731 . 2  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  ( E. x  e.  J  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) ) )
351, 34mpd 14 1  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  E. y  e.  J  ( C  C_  x  /\  D  C_  y  /\  ( x  i^i  y )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   E.wrex 2620    \ cdif 3225    i^i cin 3227    C_ wss 3228   (/)c0 3531   U.cuni 3906   ` cfv 5334   Topctop 16731   Clsdccld 16853   clsccl 16855   Nrmcnrm 17138
This theorem is referenced by:  isnrm3  17187
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-top 16736  df-cld 16856  df-cls 16858  df-nrm 17145
  Copyright terms: Public domain W3C validator