MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep2 Structured version   Unicode version

Theorem nrmsep2 17412
Description: In a normal space, any two disjoint closed sets have the property that each one is a subset of an open set whose closure is disjoint from the other. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep2  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  ( C  C_  x  /\  ( ( ( cls `  J
) `  x )  i^i  D )  =  (/) ) )
Distinct variable groups:    x, C    x, D    x, J

Proof of Theorem nrmsep2
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  J  e.  Nrm )
2 simpr2 964 . . . 4  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  D  e.  ( Clsd `  J
) )
3 eqid 2435 . . . . 5  |-  U. J  =  U. J
43cldopn 17087 . . . 4  |-  ( D  e.  ( Clsd `  J
)  ->  ( U. J  \  D )  e.  J )
52, 4syl 16 . . 3  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  ( U. J  \  D )  e.  J )
6 simpr1 963 . . 3  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  C  e.  ( Clsd `  J
) )
7 simpr3 965 . . . 4  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  ( C  i^i  D )  =  (/) )
83cldss 17085 . . . . 5  |-  ( C  e.  ( Clsd `  J
)  ->  C  C_  U. J
)
9 reldisj 3663 . . . . 5  |-  ( C 
C_  U. J  ->  (
( C  i^i  D
)  =  (/)  <->  C  C_  ( U. J  \  D ) ) )
106, 8, 93syl 19 . . . 4  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  (
( C  i^i  D
)  =  (/)  <->  C  C_  ( U. J  \  D ) ) )
117, 10mpbid 202 . . 3  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  C  C_  ( U. J  \  D ) )
12 nrmsep3 17411 . . 3  |-  ( ( J  e.  Nrm  /\  ( ( U. J  \  D )  e.  J  /\  C  e.  ( Clsd `  J )  /\  C  C_  ( U. J  \  D ) ) )  ->  E. x  e.  J  ( C  C_  x  /\  ( ( cls `  J
) `  x )  C_  ( U. J  \  D ) ) )
131, 5, 6, 11, 12syl13anc 1186 . 2  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  ( C  C_  x  /\  ( ( cls `  J ) `
 x )  C_  ( U. J  \  D
) ) )
14 ssdifin0 3701 . . . 4  |-  ( ( ( cls `  J
) `  x )  C_  ( U. J  \  D )  ->  (
( ( cls `  J
) `  x )  i^i  D )  =  (/) )
1514anim2i 553 . . 3  |-  ( ( C  C_  x  /\  ( ( cls `  J
) `  x )  C_  ( U. J  \  D ) )  -> 
( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) )
1615reximi 2805 . 2  |-  ( E. x  e.  J  ( C  C_  x  /\  ( ( cls `  J
) `  x )  C_  ( U. J  \  D ) )  ->  E. x  e.  J  ( C  C_  x  /\  ( ( ( cls `  J ) `  x
)  i^i  D )  =  (/) ) )
1713, 16syl 16 1  |-  ( ( J  e.  Nrm  /\  ( C  e.  ( Clsd `  J )  /\  D  e.  ( Clsd `  J )  /\  ( C  i^i  D )  =  (/) ) )  ->  E. x  e.  J  ( C  C_  x  /\  ( ( ( cls `  J
) `  x )  i^i  D )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2698    \ cdif 3309    i^i cin 3311    C_ wss 3312   (/)c0 3620   U.cuni 4007   ` cfv 5446   Clsdccld 17072   clsccl 17074   Nrmcnrm 17366
This theorem is referenced by:  nrmsep  17413  isnrm2  17414
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454  df-top 16955  df-cld 17075  df-nrm 17373
  Copyright terms: Public domain W3C validator