Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmtop Structured version   Unicode version

Theorem nrmtop 17431
 Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmtop

Proof of Theorem nrmtop
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 17430 . 2
21simplbi 448 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wcel 1727  wral 2711  wrex 2712   cin 3305   wss 3306  cpw 3823  cfv 5483  ctop 16989  ccld 17111  ccl 17113  cnrm 17405 This theorem is referenced by:  pnrmtop  17436  nrmsep  17452  isnrm2  17453  isnrm3  17454  nrmr0reg  17812  kqnrm  17815  nrmhmph  17857 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-iota 5447  df-fv 5491  df-nrm 17412
 Copyright terms: Public domain W3C validator