MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmtop Unicode version

Theorem nrmtop 17064
Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
nrmtop  |-  ( J  e.  Nrm  ->  J  e.  Top )

Proof of Theorem nrmtop
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 17063 . 2  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. x  e.  J  A. y  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. z  e.  J  ( y  C_  z  /\  ( ( cls `  J ) `  z
)  C_  x )
) )
21simplbi 446 1  |-  ( J  e.  Nrm  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   ` cfv 5255   Topctop 16631   Clsdccld 16753   clsccl 16755   Nrmcnrm 17038
This theorem is referenced by:  pnrmtop  17069  nrmsep  17085  isnrm2  17086  isnrm3  17087  nrmr0reg  17440  kqnrm  17443  nrmhmph  17485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-nrm 17045
  Copyright terms: Public domain W3C validator