MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgacs Unicode version

Theorem nsgacs 14653
Description: Normal subgroups form an algebraic closure system. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
subgacs.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
nsgacs  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  e.  (ACS
`  B ) )

Proof of Theorem nsgacs
Dummy variables  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgacs.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
21subgss 14622 . . . . . . . 8  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  B )
3 vex 2791 . . . . . . . . 9  |-  s  e. 
_V
43elpw 3631 . . . . . . . 8  |-  ( s  e.  ~P B  <->  s  C_  B )
52, 4sylibr 203 . . . . . . 7  |-  ( s  e.  (SubGrp `  G
)  ->  s  e.  ~P B )
6 eleq2 2344 . . . . . . . . . 10  |-  ( z  =  s  ->  (
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
76raleqbi1dv 2744 . . . . . . . . 9  |-  ( z  =  s  ->  ( A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
87ralbidv 2563 . . . . . . . 8  |-  ( z  =  s  ->  ( A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z  <->  A. x  e.  B  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
98elrab3 2924 . . . . . . 7  |-  ( s  e.  ~P B  -> 
( s  e.  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  <->  A. x  e.  B  A. y  e.  s  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  s ) )
105, 9syl 15 . . . . . 6  |-  ( s  e.  (SubGrp `  G
)  ->  ( s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z }  <->  A. x  e.  B  A. y  e.  s 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  s ) )
1110bicomd 192 . . . . 5  |-  ( s  e.  (SubGrp `  G
)  ->  ( A. x  e.  B  A. y  e.  s  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  s  <->  s  e.  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } ) )
1211pm5.32i 618 . . . 4  |-  ( ( s  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  s  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  s )  <->  ( s  e.  (SubGrp `  G )  /\  s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } ) )
13 eqid 2283 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2283 . . . . 5  |-  ( -g `  G )  =  (
-g `  G )
151, 13, 14isnsg3 14651 . . . 4  |-  ( s  e.  (NrmSGrp `  G
)  <->  ( s  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  s 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  s ) )
16 elin 3358 . . . 4  |-  ( s  e.  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )  <-> 
( s  e.  (SubGrp `  G )  /\  s  e.  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } ) )
1712, 15, 163bitr4i 268 . . 3  |-  ( s  e.  (NrmSGrp `  G
)  <->  s  e.  ( (SubGrp `  G )  i^i  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } ) )
1817eqriv 2280 . 2  |-  (NrmSGrp `  G
)  =  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )
19 fvex 5539 . . . . 5  |-  ( Base `  G )  e.  _V
201, 19eqeltri 2353 . . . 4  |-  B  e. 
_V
21 mreacs 13560 . . . 4  |-  ( B  e.  _V  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
2220, 21mp1i 11 . . 3  |-  ( G  e.  Grp  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
231subgacs 14652 . . 3  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
24 simpl 443 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  G  e.  Grp )
251, 13grpcl 14495 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
26253expb 1152 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e.  B )
27 simprl 732 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  x  e.  B )
281, 14grpsubcl 14546 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  B  /\  x  e.  B )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
2924, 26, 27, 28syl3anc 1182 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
3029ralrimivva 2635 . . . 4  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  B
)
31 acsfn1c 13564 . . . 4  |-  ( ( B  e.  _V  /\  A. x  e.  B  A. y  e.  B  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )  ->  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )
3220, 30, 31sylancr 644 . . 3  |-  ( G  e.  Grp  ->  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )
33 mreincl 13501 . . 3  |-  ( ( (ACS `  B )  e.  (Moore `  ~P B )  /\  (SubGrp `  G
)  e.  (ACS `  B )  /\  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z }  e.  (ACS `  B ) )  ->  ( (SubGrp `  G )  i^i  {
z  e.  ~P B  |  A. x  e.  B  A. y  e.  z 
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  z } )  e.  (ACS `  B
) )
3422, 23, 32, 33syl3anc 1182 . 2  |-  ( G  e.  Grp  ->  (
(SubGrp `  G )  i^i  { z  e.  ~P B  |  A. x  e.  B  A. y  e.  z  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  z } )  e.  (ACS
`  B ) )
3518, 34syl5eqel 2367 1  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  e.  (ACS
`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208  Moorecmre 13484  ACScacs 13487   Grpcgrp 14362   -gcsg 14365  SubGrpcsubg 14615  NrmSGrpcnsg 14616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-nsg 14619
  Copyright terms: Public domain W3C validator