MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgbi Structured version   Unicode version

Theorem nsgbi 14971
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
nsgbi  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) )

Proof of Theorem nsgbi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . . . 5  |-  X  =  ( Base `  G
)
2 isnsg.2 . . . . 5  |-  .+  =  ( +g  `  G )
31, 2isnsg 14969 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
43simprbi 451 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S
) )
5 oveq1 6088 . . . . . 6  |-  ( x  =  A  ->  (
x  .+  y )  =  ( A  .+  y ) )
65eleq1d 2502 . . . . 5  |-  ( x  =  A  ->  (
( x  .+  y
)  e.  S  <->  ( A  .+  y )  e.  S
) )
7 oveq2 6089 . . . . . 6  |-  ( x  =  A  ->  (
y  .+  x )  =  ( y  .+  A ) )
87eleq1d 2502 . . . . 5  |-  ( x  =  A  ->  (
( y  .+  x
)  e.  S  <->  ( y  .+  A )  e.  S
) )
96, 8bibi12d 313 . . . 4  |-  ( x  =  A  ->  (
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S )  <->  ( ( A  .+  y )  e.  S  <->  ( y  .+  A )  e.  S
) ) )
10 oveq2 6089 . . . . . 6  |-  ( y  =  B  ->  ( A  .+  y )  =  ( A  .+  B
) )
1110eleq1d 2502 . . . . 5  |-  ( y  =  B  ->  (
( A  .+  y
)  e.  S  <->  ( A  .+  B )  e.  S
) )
12 oveq1 6088 . . . . . 6  |-  ( y  =  B  ->  (
y  .+  A )  =  ( B  .+  A ) )
1312eleq1d 2502 . . . . 5  |-  ( y  =  B  ->  (
( y  .+  A
)  e.  S  <->  ( B  .+  A )  e.  S
) )
1411, 13bibi12d 313 . . . 4  |-  ( y  =  B  ->  (
( ( A  .+  y )  e.  S  <->  ( y  .+  A )  e.  S )  <->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
159, 14rspc2v 3058 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( x 
.+  y )  e.  S  <->  ( y  .+  x )  e.  S
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) ) )
164, 15syl5com 28 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) ) )
17163impib 1151 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   ` cfv 5454  (class class class)co 6081   Basecbs 13469   +g cplusg 13529  SubGrpcsubg 14938  NrmSGrpcnsg 14939
This theorem is referenced by:  nsgconj  14973  eqgcpbl  14994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-subg 14941  df-nsg 14942
  Copyright terms: Public domain W3C validator