MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgid Structured version   Unicode version

Theorem nsgid 14978
Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
nsgid.z  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
nsgid  |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G )
)

Proof of Theorem nsgid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgid.z . . 3  |-  B  =  ( Base `  G
)
21subgid 14938 . 2  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
3 simp1 957 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  G  e.  Grp )
4 eqid 2435 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
51, 4grpcl 14810 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
6 simp2 958 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  x  e.  B )
7 eqid 2435 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
81, 7grpsubcl 14861 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  B  /\  x  e.  B )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
93, 5, 6, 8syl3anc 1184 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  B )
1093expb 1154 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
1110ralrimivva 2790 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  B
)
121, 4, 7isnsg3 14966 . 2  |-  ( B  e.  (NrmSGrp `  G
)  <->  ( B  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  B  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  B ) )
132, 11, 12sylanbrc 646 1  |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   Grpcgrp 14677   -gcsg 14680  SubGrpcsubg 14930  NrmSGrpcnsg 14931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-ress 13468  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-sbg 14806  df-subg 14933  df-nsg 14934
  Copyright terms: Public domain W3C validator