MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgid Unicode version

Theorem nsgid 14906
Description: The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
nsgid.z  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
nsgid  |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G )
)

Proof of Theorem nsgid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgid.z . . 3  |-  B  =  ( Base `  G
)
21subgid 14866 . 2  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
3 simp1 957 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  G  e.  Grp )
4 eqid 2380 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
51, 4grpcl 14738 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  G ) y )  e.  B )
6 simp2 958 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  x  e.  B )
7 eqid 2380 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
81, 7grpsubcl 14789 . . . . 5  |-  ( ( G  e.  Grp  /\  ( x ( +g  `  G ) y )  e.  B  /\  x  e.  B )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
93, 5, 6, 8syl3anc 1184 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  B  /\  y  e.  B )  ->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  B )
1093expb 1154 . . 3  |-  ( ( G  e.  Grp  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  B )
1110ralrimivva 2734 . 2  |-  ( G  e.  Grp  ->  A. x  e.  B  A. y  e.  B  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  B
)
121, 4, 7isnsg3 14894 . 2  |-  ( B  e.  (NrmSGrp `  G
)  <->  ( B  e.  (SubGrp `  G )  /\  A. x  e.  B  A. y  e.  B  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  B ) )
132, 11, 12sylanbrc 646 1  |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   ` cfv 5387  (class class class)co 6013   Basecbs 13389   +g cplusg 13449   Grpcgrp 14605   -gcsg 14608  SubGrpcsubg 14858  NrmSGrpcnsg 14859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-ress 13396  df-0g 13647  df-mnd 14610  df-grp 14732  df-minusg 14733  df-sbg 14734  df-subg 14861  df-nsg 14862
  Copyright terms: Public domain W3C validator