Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsn Unicode version

Theorem nsn 25633
Description: The neighborhoods of the singletons are neighborhoods. (Contributed by FL, 2-Aug-2009.)
Hypothesis
Ref Expression
nsn.1  |-  X  = 
U. J
Assertion
Ref Expression
nsn  |-  ( J  e.  Top  ->  U_ x  e.  X  ( ( nei `  J ) `  { x } ) 
C_  U. ran  ( nei `  J ) )
Distinct variable group:    x, J
Allowed substitution hint:    X( x)

Proof of Theorem nsn
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 3925 . . . . 5  |-  ( y  e.  U_ x  e.  X  ( ( nei `  J ) `  {
x } )  <->  E. x  e.  X  y  e.  ( ( nei `  J
) `  { x } ) )
2 vex 2804 . . . . . . . . . 10  |-  x  e. 
_V
32snelpw 4237 . . . . . . . . 9  |-  ( x  e.  X  <->  { x }  e.  ~P X
)
4 nsn.1 . . . . . . . . . . 11  |-  X  = 
U. J
54neif 16853 . . . . . . . . . 10  |-  ( J  e.  Top  ->  ( nei `  J )  Fn 
~P X )
6 fndm 5359 . . . . . . . . . 10  |-  ( ( nei `  J )  Fn  ~P X  ->  dom  ( nei `  J
)  =  ~P X
)
7 eleq2 2357 . . . . . . . . . . . 12  |-  ( ~P X  =  dom  ( nei `  J )  -> 
( { x }  e.  ~P X  <->  { x }  e.  dom  ( nei `  J ) ) )
87biimpd 198 . . . . . . . . . . 11  |-  ( ~P X  =  dom  ( nei `  J )  -> 
( { x }  e.  ~P X  ->  { x }  e.  dom  ( nei `  J ) ) )
98eqcoms 2299 . . . . . . . . . 10  |-  ( dom  ( nei `  J
)  =  ~P X  ->  ( { x }  e.  ~P X  ->  { x }  e.  dom  ( nei `  J ) ) )
105, 6, 93syl 18 . . . . . . . . 9  |-  ( J  e.  Top  ->  ( { x }  e.  ~P X  ->  { x }  e.  dom  ( nei `  J ) ) )
113, 10syl5bi 208 . . . . . . . 8  |-  ( J  e.  Top  ->  (
x  e.  X  ->  { x }  e.  dom  ( nei `  J
) ) )
12 fveq2 5541 . . . . . . . . . . 11  |-  ( z  =  { x }  ->  ( ( nei `  J
) `  z )  =  ( ( nei `  J ) `  {
x } ) )
1312eleq2d 2363 . . . . . . . . . 10  |-  ( z  =  { x }  ->  ( y  e.  ( ( nei `  J
) `  z )  <->  y  e.  ( ( nei `  J ) `  {
x } ) ) )
1413rspcev 2897 . . . . . . . . 9  |-  ( ( { x }  e.  dom  ( nei `  J
)  /\  y  e.  ( ( nei `  J
) `  { x } ) )  ->  E. z  e.  dom  ( nei `  J ) y  e.  ( ( nei `  J ) `
 z ) )
1514ex 423 . . . . . . . 8  |-  ( { x }  e.  dom  ( nei `  J )  ->  ( y  e.  ( ( nei `  J
) `  { x } )  ->  E. z  e.  dom  ( nei `  J
) y  e.  ( ( nei `  J
) `  z )
) )
1611, 15syl6 29 . . . . . . 7  |-  ( J  e.  Top  ->  (
x  e.  X  -> 
( y  e.  ( ( nei `  J
) `  { x } )  ->  E. z  e.  dom  ( nei `  J
) y  e.  ( ( nei `  J
) `  z )
) ) )
1716com3l 75 . . . . . 6  |-  ( x  e.  X  ->  (
y  e.  ( ( nei `  J ) `
 { x }
)  ->  ( J  e.  Top  ->  E. z  e.  dom  ( nei `  J
) y  e.  ( ( nei `  J
) `  z )
) ) )
1817rexlimiv 2674 . . . . 5  |-  ( E. x  e.  X  y  e.  ( ( nei `  J ) `  {
x } )  -> 
( J  e.  Top  ->  E. z  e.  dom  ( nei `  J ) y  e.  ( ( nei `  J ) `
 z ) ) )
191, 18sylbi 187 . . . 4  |-  ( y  e.  U_ x  e.  X  ( ( nei `  J ) `  {
x } )  -> 
( J  e.  Top  ->  E. z  e.  dom  ( nei `  J ) y  e.  ( ( nei `  J ) `
 z ) ) )
2019com12 27 . . 3  |-  ( J  e.  Top  ->  (
y  e.  U_ x  e.  X  ( ( nei `  J ) `  { x } )  ->  E. z  e.  dom  ( nei `  J ) y  e.  ( ( nei `  J ) `
 z ) ) )
21 eqid 2296 . . . . 5  |-  U. J  =  U. J
2221neif 16853 . . . 4  |-  ( J  e.  Top  ->  ( nei `  J )  Fn 
~P U. J )
23 fnfun 5357 . . . 4  |-  ( ( nei `  J )  Fn  ~P U. J  ->  Fun  ( nei `  J
) )
24 elunirn 5793 . . . 4  |-  ( Fun  ( nei `  J
)  ->  ( y  e.  U. ran  ( nei `  J )  <->  E. z  e.  dom  ( nei `  J
) y  e.  ( ( nei `  J
) `  z )
) )
2522, 23, 243syl 18 . . 3  |-  ( J  e.  Top  ->  (
y  e.  U. ran  ( nei `  J )  <->  E. z  e.  dom  ( nei `  J ) y  e.  ( ( nei `  J ) `
 z ) ) )
2620, 25sylibrd 225 . 2  |-  ( J  e.  Top  ->  (
y  e.  U_ x  e.  X  ( ( nei `  J ) `  { x } )  ->  y  e.  U. ran  ( nei `  J
) ) )
2726ssrdv 3198 1  |-  ( J  e.  Top  ->  U_ x  e.  X  ( ( nei `  J ) `  { x } ) 
C_  U. ran  ( nei `  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   E.wrex 2557    C_ wss 3165   ~Pcpw 3638   {csn 3653   U.cuni 3843   U_ciun 3921   dom cdm 4705   ran crn 4706   Fun wfun 5265    Fn wfn 5266   ` cfv 5271   Topctop 16647   neicnei 16850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 16652  df-nei 16851
  Copyright terms: Public domain W3C validator