Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nss Structured version   Unicode version

Theorem nss 3406
 Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
nss
Distinct variable groups:   ,   ,

Proof of Theorem nss
StepHypRef Expression
1 exanali 1595 . . 3
2 dfss2 3337 . . 3
31, 2xchbinxr 303 . 2
43bicomi 194 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359  wal 1549  wex 1550   wcel 1725   wss 3320 This theorem is referenced by:  grur1  8695  psslinpr  8908  reclem2pr  8925  mreexexlem2d  13870  prmcyg  15503  filcon  17915  alexsubALTlem4  18081  wilthlem2  20852  shne0i  22950  erdszelem10  24886  fundmpss  25390 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-in 3327  df-ss 3334
 Copyright terms: Public domain W3C validator