MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssinpss Unicode version

Theorem nssinpss 3435
Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
nssinpss  |-  ( -.  A  C_  B  <->  ( A  i^i  B )  C.  A
)

Proof of Theorem nssinpss
StepHypRef Expression
1 inss1 3423 . . 3  |-  ( A  i^i  B )  C_  A
21biantrur 492 . 2  |-  ( ( A  i^i  B )  =/=  A  <->  ( ( A  i^i  B )  C_  A  /\  ( A  i^i  B )  =/=  A ) )
3 df-ss 3200 . . 3  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
43necon3bbii 2510 . 2  |-  ( -.  A  C_  B  <->  ( A  i^i  B )  =/=  A
)
5 df-pss 3202 . 2  |-  ( ( A  i^i  B ) 
C.  A  <->  ( ( A  i^i  B )  C_  A  /\  ( A  i^i  B )  =/=  A ) )
62, 4, 53bitr4i 268 1  |-  ( -.  A  C_  B  <->  ( A  i^i  B )  C.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    /\ wa 358    =/= wne 2479    i^i cin 3185    C_ wss 3186    C. wpss 3187
This theorem is referenced by:  fbfinnfr  17588  chrelat2i  23000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-v 2824  df-in 3193  df-ss 3200  df-pss 3202
  Copyright terms: Public domain W3C validator